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INTRODUCTION

▸ Academic-industrial collaboration with Jobindex 

– Denmark’s biggest job portal (>30K job postings, >120K resumés, >600 unique users) 

▸ Two projects 

– Jobmatch (2020-2023) 

• Supporting recruiters (i.e., candidate recommendation) 

– Fairmatch (2024-2027) 

• Fair algorithmic hiring (both candidate and job recommendation)
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Hej, 

Er du detalje-orienteret og kan du arbejde struktureret og 
selvstændigt? Elsker du at hjælpe dine kollegaer med 
produktions- og supportopgaver samt øvrige interne opgaver? 
Er du til sund fornuft og handlekraft, så kan du nu blive 
kundemedarbejder til BackOffice hos Sparekassen Danmark A/S. 
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ABOUT THE PROJECT

▸ Jobmatch project 

– Three-year research project from Innovation Fund Denmark with two post-docs (Mesut Kaya 
and Qiuchi Li) 

– Collaboration between University of Copenhagen, Aalborg University and Jobindex 

▸ Goal is to support Jobindex’ recruiters in their work matching candidates to jobs
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UNDERSTANDING RECRUITERS: CONTEXTUAL INQUIRY

▸ Supporting the recruiters means understanding how they work 

– Qualitative study of recruiters’ work processes 

• 12 contextual inquiry sessions (≈ mix of observation and interview) 

• 1 focus group 

– Quantitative study of recruiters’ search logs 

• Analysis of 157,046 search sessions (queries, contacted candidates, responses)
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UNDERSTANDING RECRUITERS: FINDINGS

▸ Findings 

– Recruiters focus on primary qualifications (= skills & competences) and past/current job titles 

– Search results can serve as source of new search terms 

– Commonly used filters include salary and years of work/management experience 

– Relevance assessed using 1-3 most recent work experiences and matches on qualifications 

– Strong reliance on highlighting in the results list 

– First 10 candidates are low-hanging fruit, next 10 candidates require more time and effort 

– Time per query, use of filters and query complexity all increase throughout the sessions 

– Caveat: no clickstream data ➝ we are analyzing a richer search log for future work
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EXPERIMENTS

▸ Goal is to support recruiters with recommendations instead of replacing them 

– Relevant recommendations should result in shorter sessions and more efficient recruiters 

▸ Algorithm development 

– Collaborative filtering baselines ➝ using past interactions between job seekers and job ads 
(“People who applied for job X also applied for this job”) 

• Item-based k-Nearest Neighbor 

• Bayesian Personalized Ranking 

• Problems: cold start (each job is new!) and data sparsity                                                                 
(few interactions!)
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EXPERIMENTS

▸ Content-based filtering ➝ using semantic representations of jobs and CVs to match them 

– Generated embeddings of job ads and CVs using word2vec, doc2vec, and (Danish) BERT 

• Pre-trained as well as fine-tuned on ~260,000 CVs and ~426,000 job ads 

• Standard matching between job ad and CV embeddings using FAISS library 

– Development iterations 

• Iteration 1: Full-text embeddings vs. embedding only job titles 

• Iteration 2: Hybrid algorithm that incorporates the interaction history embedding of job titles only 

★ A CV is represented by the average of all job (embeddings) they interacted with 

★ A job is represented by the average of all CV (embeddings) that interacted with it (cold start issue)
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EXPERIMENTS

• Iteration 3: Matching CVs and jobs using sentence-pair classification 
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Classifier

P( match | job, cv )

Positive/negative 
match labels

•Most recent work experience 
•Most recently completed education 
•Desired job titles  
• Keywords (may include skills)

Concatenation

Embedding of job-CV pair

BERT



FINDINGS

▸ Offline evaluation 

– Iteration 3 outperforms the existing prototypes by a                                                                  
wide margin                                                                                    

▸ Online evaluation (of iteration 3, April-Nov 2023) 

– 11.5% higher response rate when viewing the list of                                                           
recommendations 

– 12.8% fewer queries submitted 

– Around 8 out of 23 candidates to be contacted are in the list of recommendations 

– Lots of effort went into implementing A/B testing infrastructure at Jobindex
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FINDINGS

▸ Lessons learned 

– Habits can be hard to break (~40% ignore the recommendations) 

– Communication and involvement is key! (fear of being replaced vs. lack of trust) 

– Check Double-check Triple-check for bugs! 

– Pre-filtering the candidate set is useful to offset costly sentence-pair classification 

– Important (sometimes impossible?) to coordinate A/B tests with other departments 

– Success partially depends on external factors
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ABOUT THE PROJECT

▸ Fairmatch project 

– Three-year industrial postdoc grant from Innovation Fund Denmark 

– Collaboration between IT University of Copenhagen and Jobindex 

▸ Goal 

– Making Jobindex's algorithmic hiring infrastructure more fair to aid them in complying with the EU AI Act 

▸ What does fairness mean in algorithmic hiring? 

– Individual fairness? Group fairness? Which sensitive attributes are important? 

– Different stakeholders may have different notions of fairness! 

– How should we mitigate unfairness?
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▸ Algorithmic hiring is a key example of multi-stakeholder recommendation: 

– All stakeholders have their own interests that should be considered when generating 
recommendations
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PROJECT PHASES

1. Mapping Stakeholder Needs to Fairness Metrics 

▸ Qualitative research on stakeholder needs and notions of fairness, mapped to relevant fairness metrics 

2. Auditing Algorithmic Hiring through a Fairness Dashboard 

▸ Develop an algorithmic auditing framework supported by a dashboard to analyze fairness metrics 

3. Fair candidate recommendation 

▸ Developing fairness-aware candidate recommendation algorithms 

4. Fair job recommendation 

▸ Developing fairness-aware job recommendation algorithms 

5. Industrial Integration 

▸ Integrating developed solutions into Jobindex’ infrastructure

35



CURRENT PHASE

1. Mapping Stakeholder Needs to Fairness Metrics 

▸ Qualitative research on stakeholder needs and notions of fairness, mapped to relevant fairness metrics 

2. Auditing Algorithmic Hiring through a Fairness Dashboard 

▸ Develop an algorithmic auditing framework supported by a dashboard to analyze fairness metrics 

3. Fair candidate recommendation 

▸ Developing fairness-aware candidate recommendation algorithms 

4. Fair job recommendation 

▸ Developing fairness-aware job recommendation algorithms 

5. Industrial Integration 

▸ Integrating developed solutions into Jobindex’ infrastructure
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MAPPING STAKEHOLDER NEEDS TO FAIRNESS METRICS

▸ Core stakeholders will be interviewed about their needs, fairness notions, etc. 

– Others are represented in our advisory panel
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MAPPING STAKEHOLDER NEEDS TO FAIRNESS METRICS

▸ Jobindex 

– 26 interviews completed  

– Divided over different departments involved in 
matching process 

– Includes management and regular employees 

▸ Job seekers 

– 15-20 interviews scheduled 

▸ Companies 

– 5-10 interviews scheduled
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MAPPING STAKEHOLDER NEEDS TO FAIRNESS METRICS

▸ Interviews are tailored to each interviewee 

▸ Typical interview elements 

• What does fairness in algorithmic hiring mean to them? 

• Sharing our definition 

• Interviewees provide examples of unfair situations from experience  

• Getting their feedback on our example scenarios of unfairness 

• Brainstorming on how we could/should measure fairness 

• Brainstorming on how we could/should mitigate biases
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PRELIMINARY FINDINGS

▸ Sales (= are the first to discuss the job opening) 

– Age discrimination 

• Customers prefer younger or older candidates 

– Gender 

• Customers reveal the mental model of their ideal candidate by referring to them as “he” or “she” 

• Customers attempt to find out whether female candidates already have kids or are planning to (to avoid 
paying for maternity leave) 

– Ethnicity / country of origin 

• Explicit rejection of candidates with specific ethnicity or country of origin 

• Requests for candidates that speak fluent Danish
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PRELIMINARY FINDINGS

▸ Ad writing 

– Core task is to write better job ads in 
collaboration with the customer 

– Part of this inv0lves removing 
discriminative language (e.g., gendered 
terms) 

▸ Recruiters 

– Can often tell from a blind resume what the 
likely sensitive attributes of the candidate 
are
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Masculine-coded Feminine-coded

Headstrong Compassionate

Fearless Understanding

Competitive Nurturing

Driven Interpersonal

Self-reliant Kind

Dominant Agreeable

Greedy Affectionate

Gaucher, D., Friesen, J., & Kay, A. C. (2011). Evidence that Gendered 
Wording in Job Advertisements Exists and Sustains Gender Inequality. 

Journal of Personality and Social Psychology, 101(1), 109.



PRELIMINARY FINDINGS

– Emergent definition of fairness from the interviews 

• For a given job, if there are N qualified candidates in the set of available job seekers, they should all 
have the same chance of being exposed to/contacted by the recruiters, regardless of their sensitive 
attributes 

★ Points to notion of Individual fairness 

★ Strong focus on qualifications! 

★ “Exposed to” and “contacted by” are not the same (although the recruiters see them as the same) 

★ They are not aware of the algorithmic biases that could be present in the                               
recommendation/search results they are presented with 

★ They acknowledge they are biased but at the same time                                                             do 
not question how this impacts their decision-making 
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PRELIMINARY FINDINGS

– Thoughts on measuring fairness 

• Compare recommendation/search results to group proportions for a sensitive attribute 

★ Whole population, resumés in the job database, specific industry, specific industry sector, similar positions 

• Consider response rate in this comparison 

★ Proportion of group A in set of contacted candidates may be different from A’s share among the positive 
responses 

• Fairness depends on size of the candidate pool 

★ Smaller pools are harder to make fair 

• Some divergent opinions on fairness 

★ “If the set of contacted candidates are all qualified, then it is fair.”
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FUTURE WORK

▸ Next steps 

– Interviews with job seekers 

– Interviews with companies 

– Mapping findings to 
fairness metrics
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To what extent do you agree that you have been treated 
unfairly while job seeking due to the following?



QUESTIONS?


