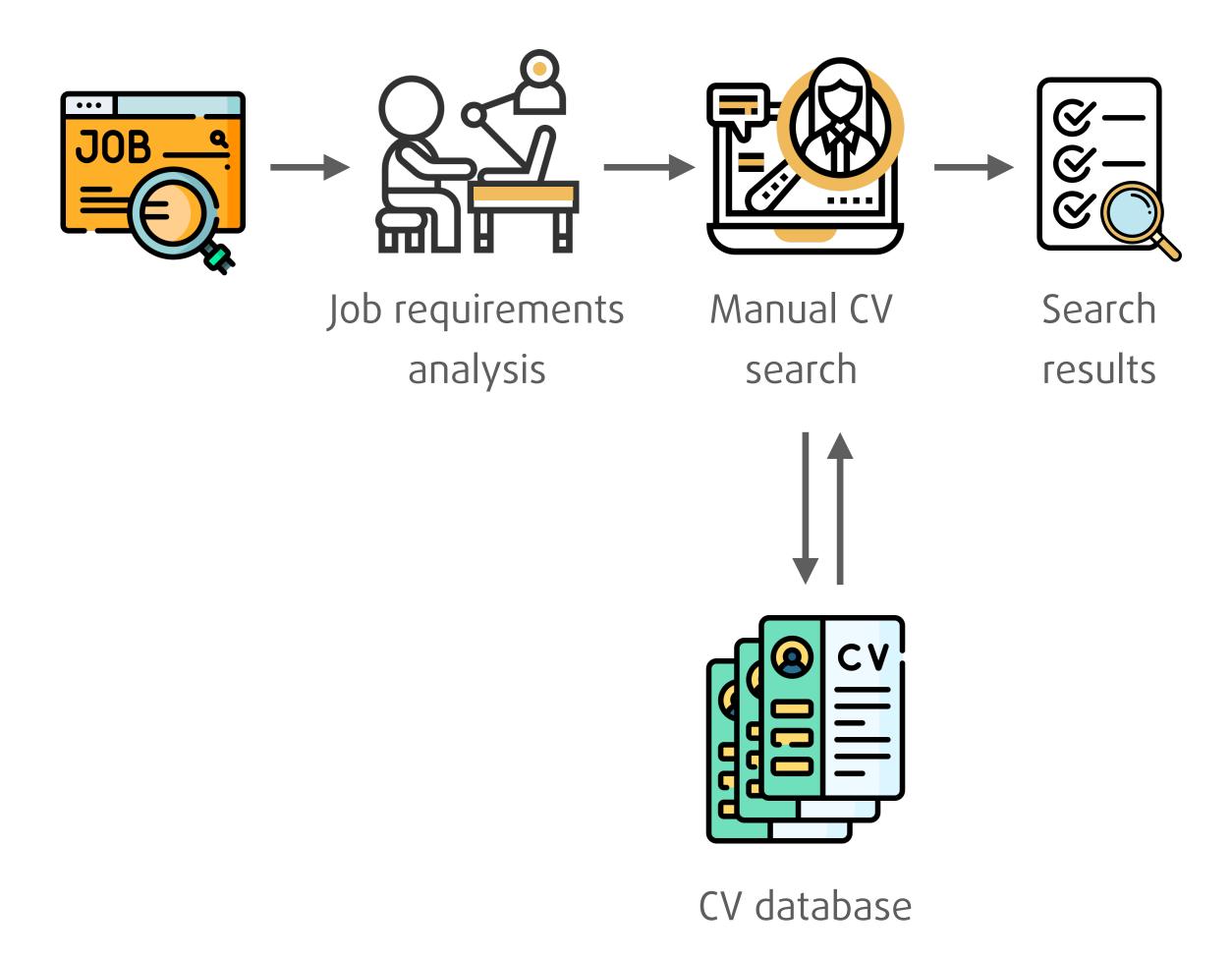
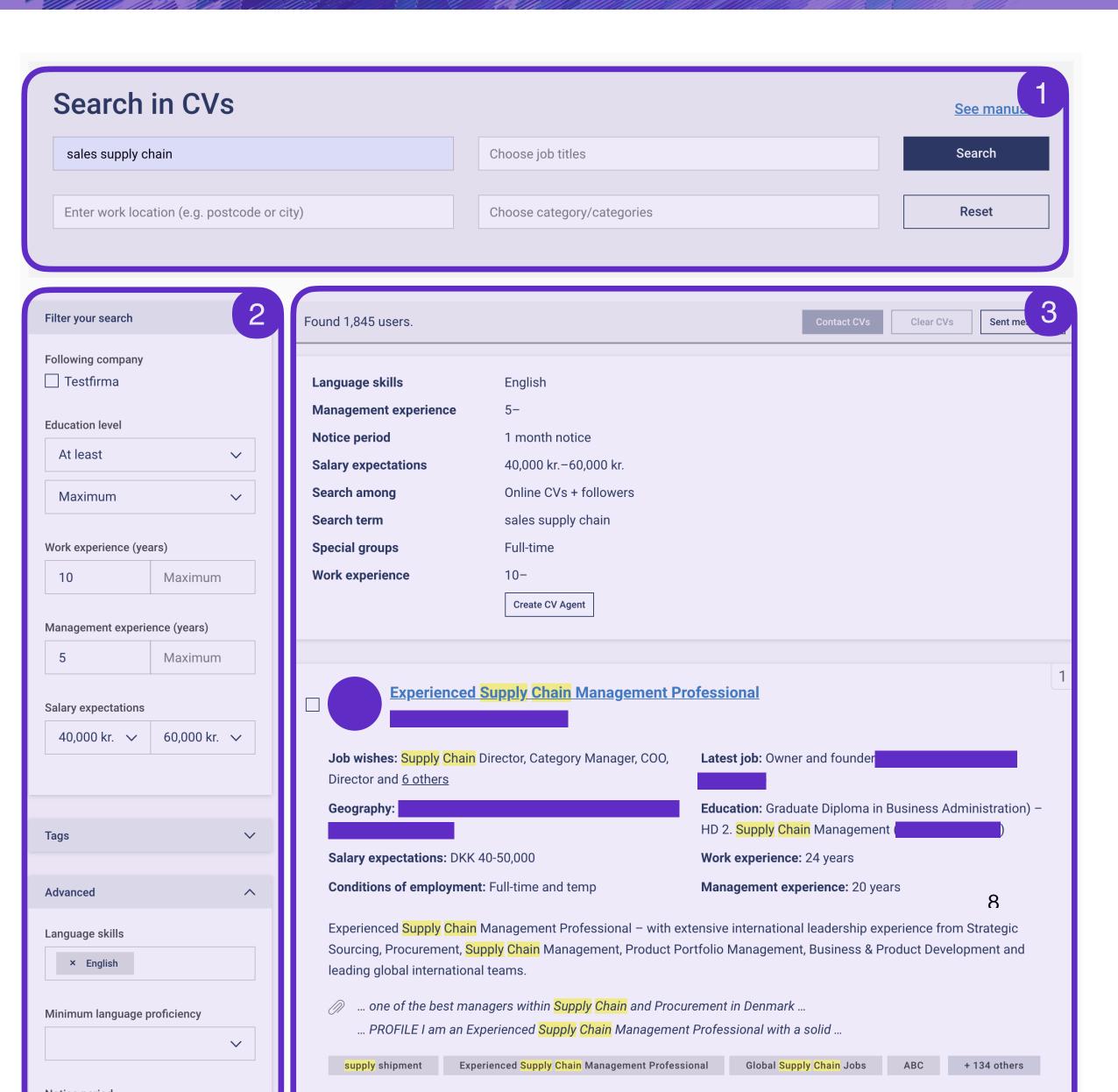


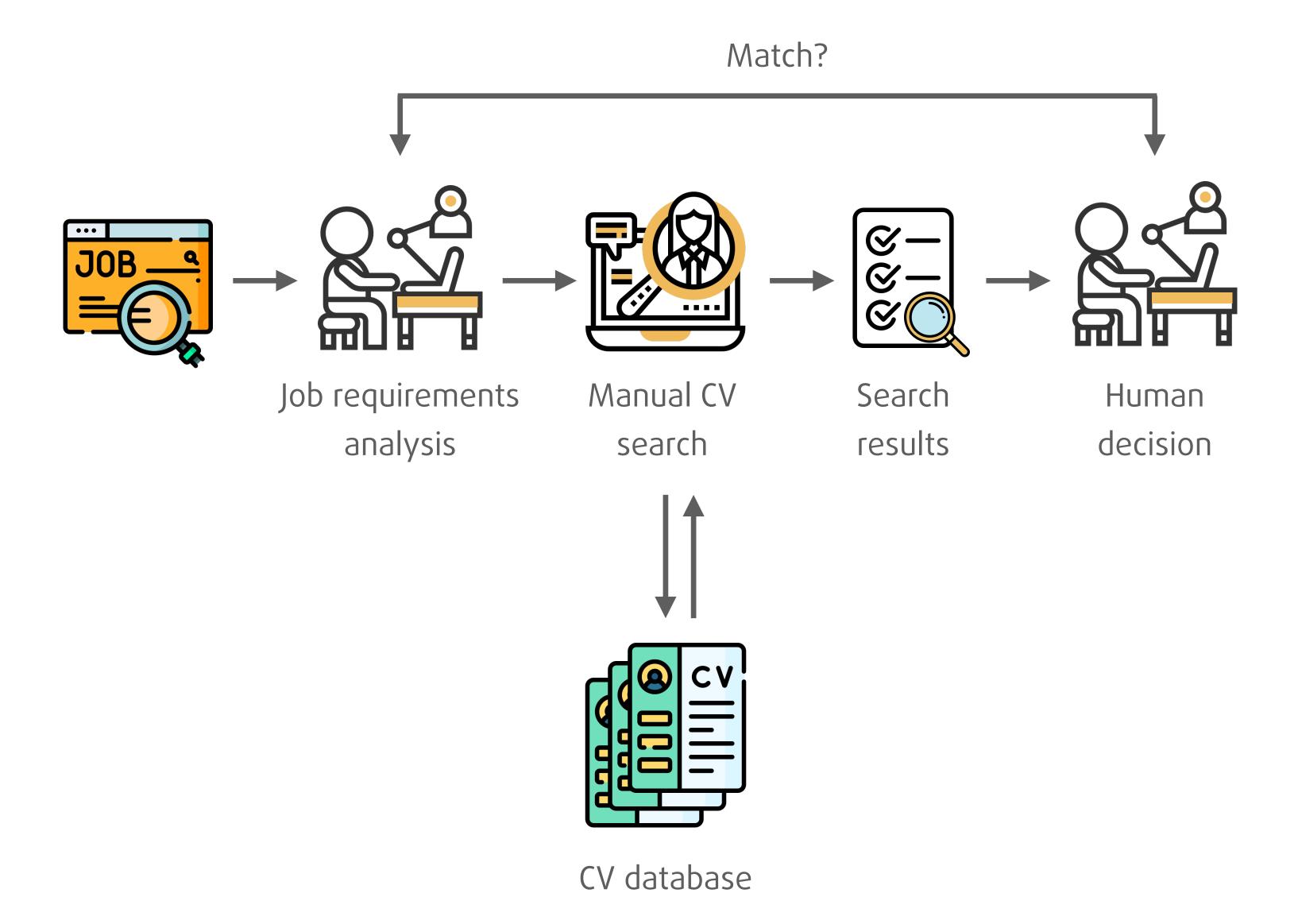
- Introduction
- Jobmatch project (2020-2023)
- Fairmatch project (2024-2027)

INTRODUCTION

- Academic-industrial collaboration with Jobindex
 - Denmark's biggest job portal (>30K job postings, >120K resumés, >600 unique users)
- Two projects
 - Jobmatch (2020-2023)
 - Supporting recruiters (i.e., candidate recommendation)
 - Fairmatch (2024-2027)
 - Fair algorithmic hiring (both candidate and job recommendation)



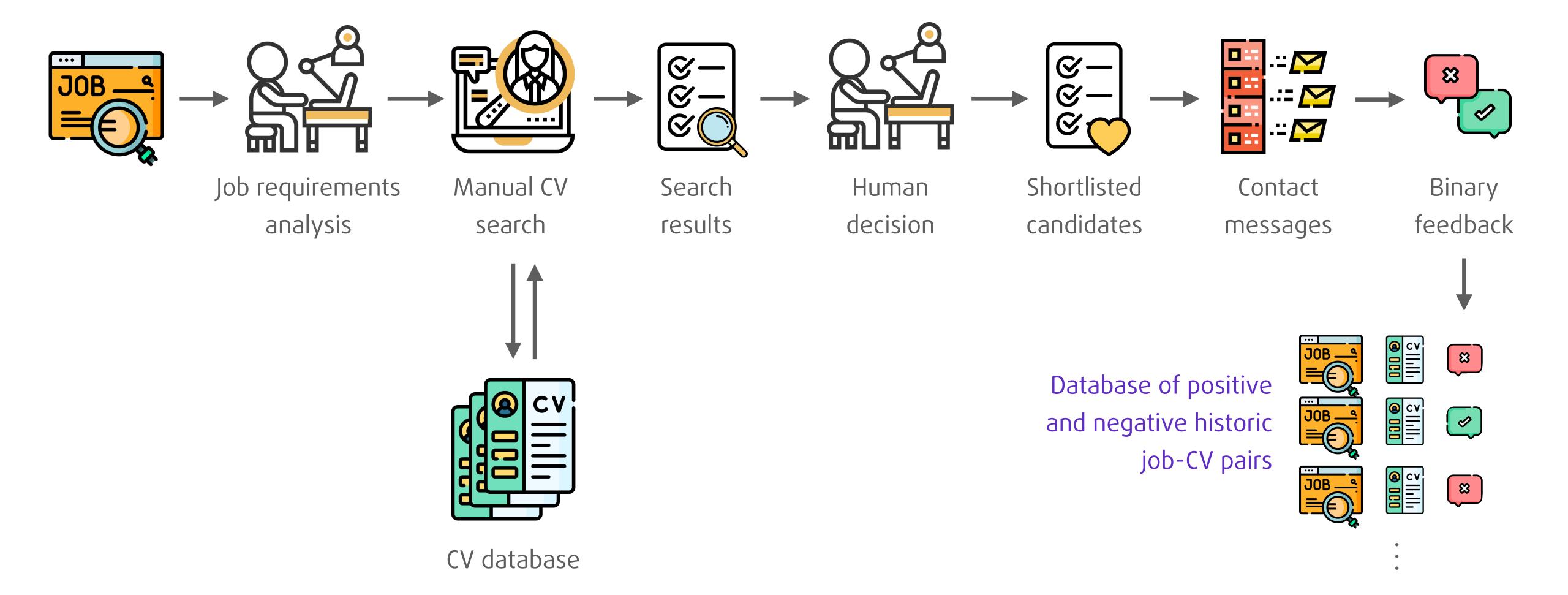




CV database

Er du til sund fornuft og handlekraft, så kan du nu blive

kundemedarbejder til BackOffice hos Sparekassen Danmark A/S.



ABOUT THE PROJECT

Jobmatch project

- Three-year research project from Innovation Fund Denmark with two post-docs (Mesut Kaya and Qiuchi Li)
- Collaboration between University of Copenhagen, Aalborg University and Jobindex
- Goal is to support Jobindex' recruiters in their work matching candidates to jobs

UNDERSTANDING RECRUITERS: CONTEXTUAL INQUIRY

- Supporting the recruiters means understanding how they work
 - Qualitative study of recruiters' work processes
 - 12 contextual inquiry sessions (≈ mix of observation and interview)
 - 1 focus group
 - Quantitative study of recruiters' search logs
 - Analysis of 157,046 search sessions (queries, contacted candidates, responses)

UNDERSTANDING RECRUITERS: CONTEXTUAL INQUIRY

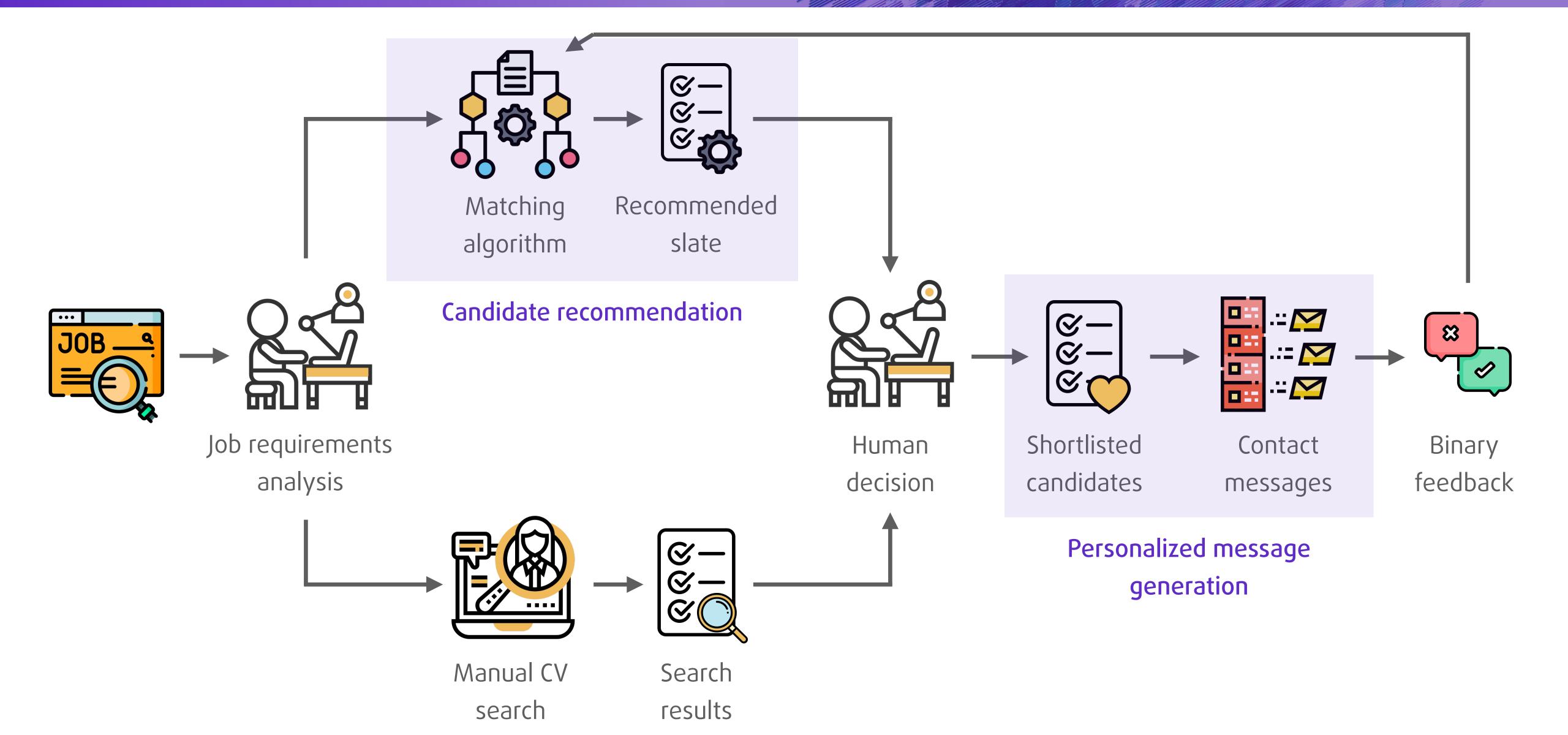
- Supporting the recruiters means understanding how they work
 - Qualitative study of recruiters' work processes
 - 12 contextual inquiry sessions (≈ mix of observation and interview)
 - 1 focus group
 - Quantitative study of recruiters' search logs
 - Analysis of 157,046 search sessions (queries, contacted candidates, responses)

UNDERSTANDING RECRUITERS: FINDINGS

Findings

- Recruiters focus on primary qualifications (= skills & competences) and past/current job titles
- Search results can serve as source of new search terms
- Commonly used filters include salary and years of work/management experience
- Relevance assessed using 1-3 most recent work experiences and matches on qualifications
- Strong reliance on highlighting in the results list
- First 10 candidates are low-hanging fruit, next 10 candidates require more time and effort
- Time per query, use of filters and query complexity all increase throughout the sessions
- Caveat: no clickstream data \rightarrow we are analyzing a richer search log for future work

CANDIDATE RECOMMENDATION

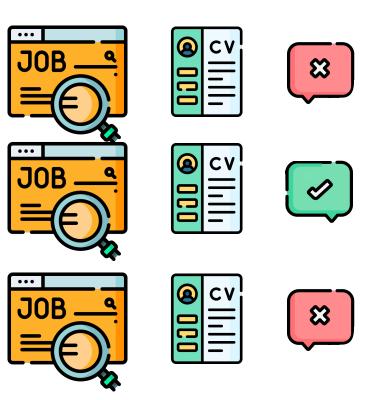


CANDIDATE RECOMMENDATION

Query o Query 2 Query 1 Query 3 Query n Recommended/ retrieved candidates Human decision Shortlisted • • • candidates

EXPERIMENTS

- Goal is to support recruiters with recommendations instead of replacing them
 - Relevant recommendations should result in **shorter sessions** and more efficient recruiters
- Algorithm development
 - **Collaborative filtering** baselines \rightarrow using past interactions between job seekers and job ads ("People who applied for job X also applied for this job")
 - Item-based k-Nearest Neighbor
 - Bayesian Personalized Ranking
 - Problems: cold start (each job is new!) and data sparsity (few interactions!)



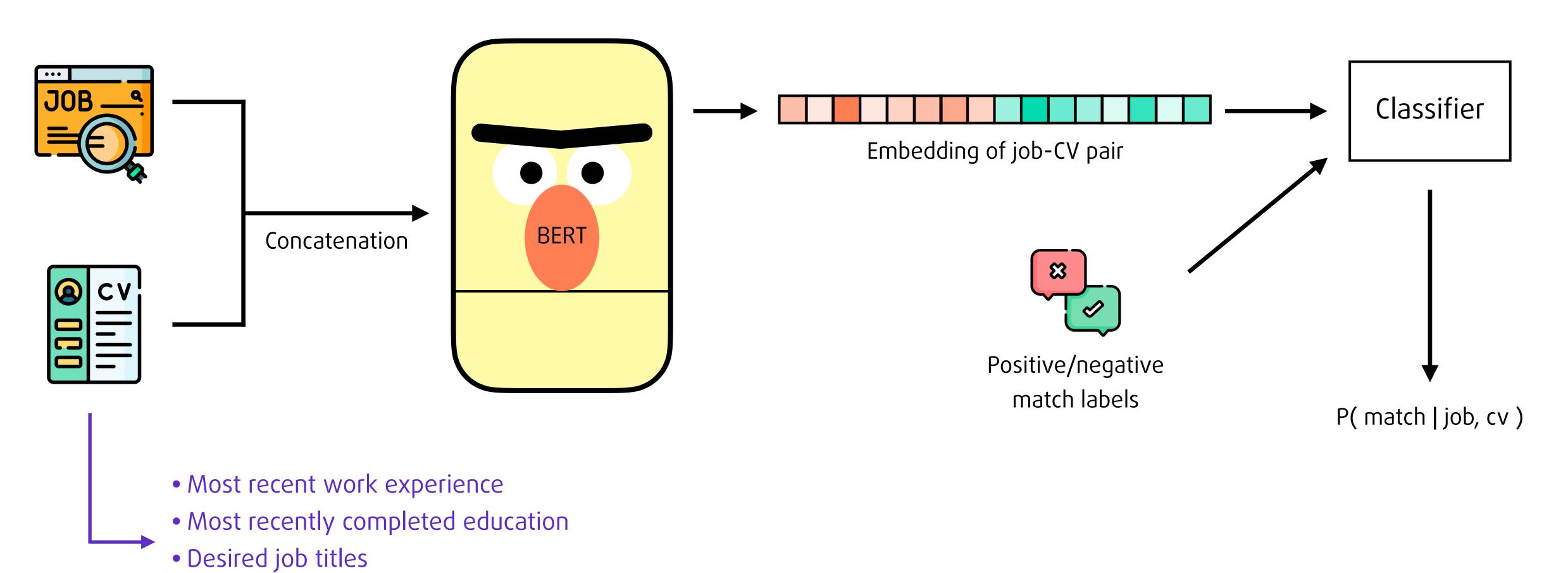
EXPERIMENTS

- ightharpoonup Content-based filtering ightharpoonup using semantic representations of jobs and CVs to match them
 - Generated embeddings of job ads and CVs using wordzvec, doczvec, and (Danish) BERT
 - Pre-trained as well as fine-tuned on ~260,000 CVs and ~426,000 job ads
 - Standard matching between job ad and CV embeddings using FAISS library
 - Development iterations
 - Iteration 1: Full-text embeddings vs. embedding only job titles
 - Iteration 2: Hybrid algorithm that incorporates the interaction history embedding of job titles only
 - ★ A CV is represented by the average of all job (embeddings) they interacted with
 - * A job is represented by the average of all CV (embeddings) that interacted with it (cold start issue)

EXPERIMENTS

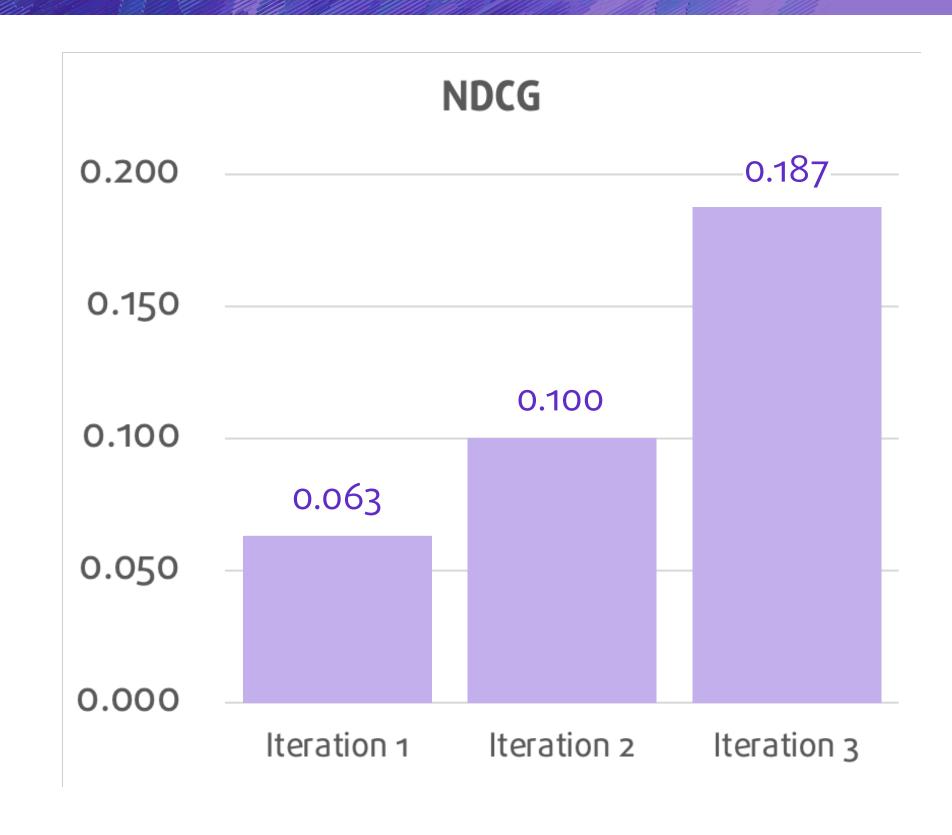
Keywords (may include skills)

• Iteration 3: Matching CVs and jobs using sentence-pair classification



FINDINGS

- Offline evaluation
 - Iteration 3 outperforms the existing prototypes by a wide margin
- Online evaluation (of iteration 3, April-Nov 2023)
 - 11.5% higher response rate when viewing the list of recommendations
 - 12.8% fewer queries submitted
 - Around 8 out of 23 candidates to be contacted are in the list of recommendations
 - Lots of effort went into implementing A/B testing infrastructure at Jobindex



FINDINGS

Lessons learned

- Habits can be hard to break (~40% ignore the recommendations)
- Communication and involvement is key! (fear of being replaced vs. lack of trust)
- Check Double-check Triple-check for bugs!
- Pre-filtering the candidate set is useful to offset costly sentence-pair classification
- Important (sometimes impossible?) to coordinate A/B tests with other departments
- Success partially depends on external factors

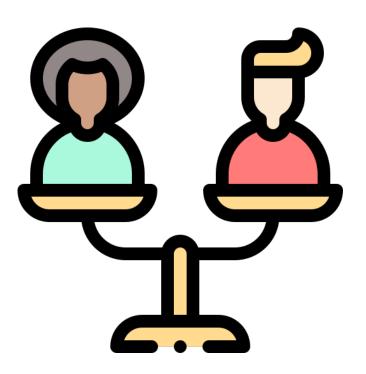
ABOUT THE PROJECT

Fairmatch project

- Three-year industrial postdoc grant from Innovation Fund Denmark
- Collaboration between IT University of Copenhagen and Jobindex

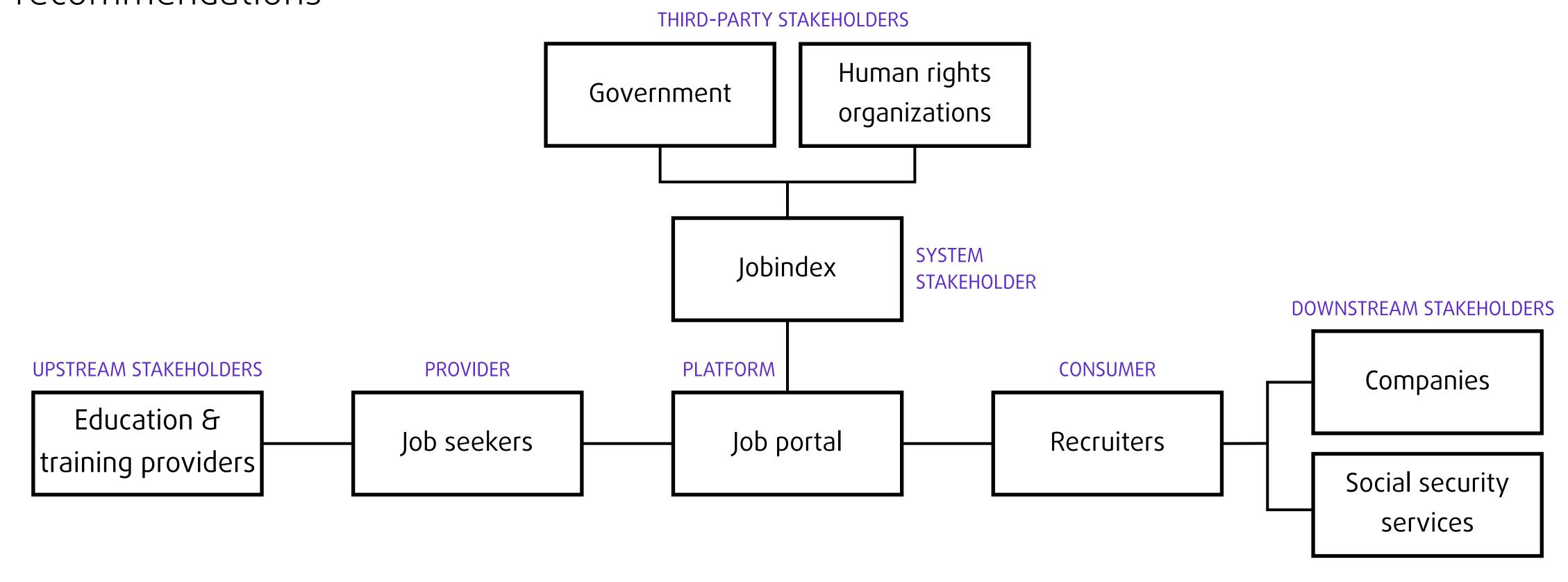
Goal

- Making Jobindex's algorithmic hiring infrastructure more fair to aid them in complying with the EU AI Act
- What does fairness mean in algorithmic hiring?
 - Individual fairness? Group fairness? Which sensitive attributes are important?
 - Different stakeholders may have different notions of fairness!
 - How should we mitigate unfairness?



MULTI-STAKEHOLDER APPROACH

- Algorithmic hiring is a key example of multi-stakeholder recommendation:
 - All stakeholders have their own interests that should be considered when generating recommendations



PROJECT PHASES

1. Mapping Stakeholder Needs to Fairness Metrics

Qualitative research on stakeholder needs and notions of fairness, mapped to relevant fairness metrics

2. Auditing Algorithmic Hiring through a Fairness Dashboard

Develop an algorithmic auditing framework supported by a dashboard to analyze fairness metrics

3. Fair candidate recommendation

Developing fairness-aware candidate recommendation algorithms

4. Fair job recommendation

Developing fairness-aware job recommendation algorithms

5. Industrial Integration

Integrating developed solutions into Jobindex' infrastructure

CURRENT PHASE

1. Mapping Stakeholder Needs to Fairness Metrics

Qualitative research on stakeholder needs and notions of fairness, mapped to relevant fairness metrics

2. Auditing Algorithmic Hiring through a Fairness Dashboard

Develop an algorithmic auditing framework supported by a dashboard to analyze fairness metrics

3. Fair candidate recommendation

Developing fairness-aware candidate recommendation algorithms

4. Fair job recommendation

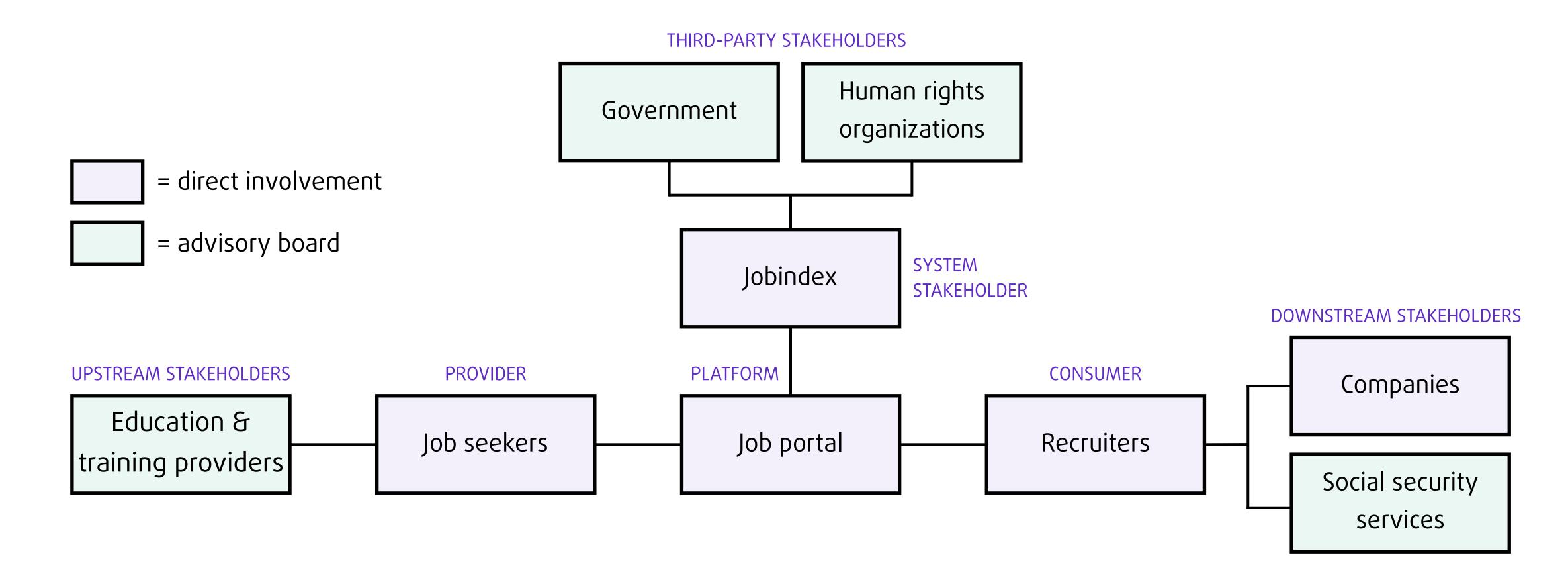
Developing fairness-aware job recommendation algorithms

5. Industrial Integration

Integrating developed solutions into Jobindex' infrastructure

MAPPING STAKEHOLDER NEEDS TO FAIRNESS METRICS

- Core stakeholders will be interviewed about their needs, fairness notions, etc.
 - Others are represented in our advisory panel



MAPPING STAKEHOLDER NEEDS TO FAIRNESS METRICS

Jobindex

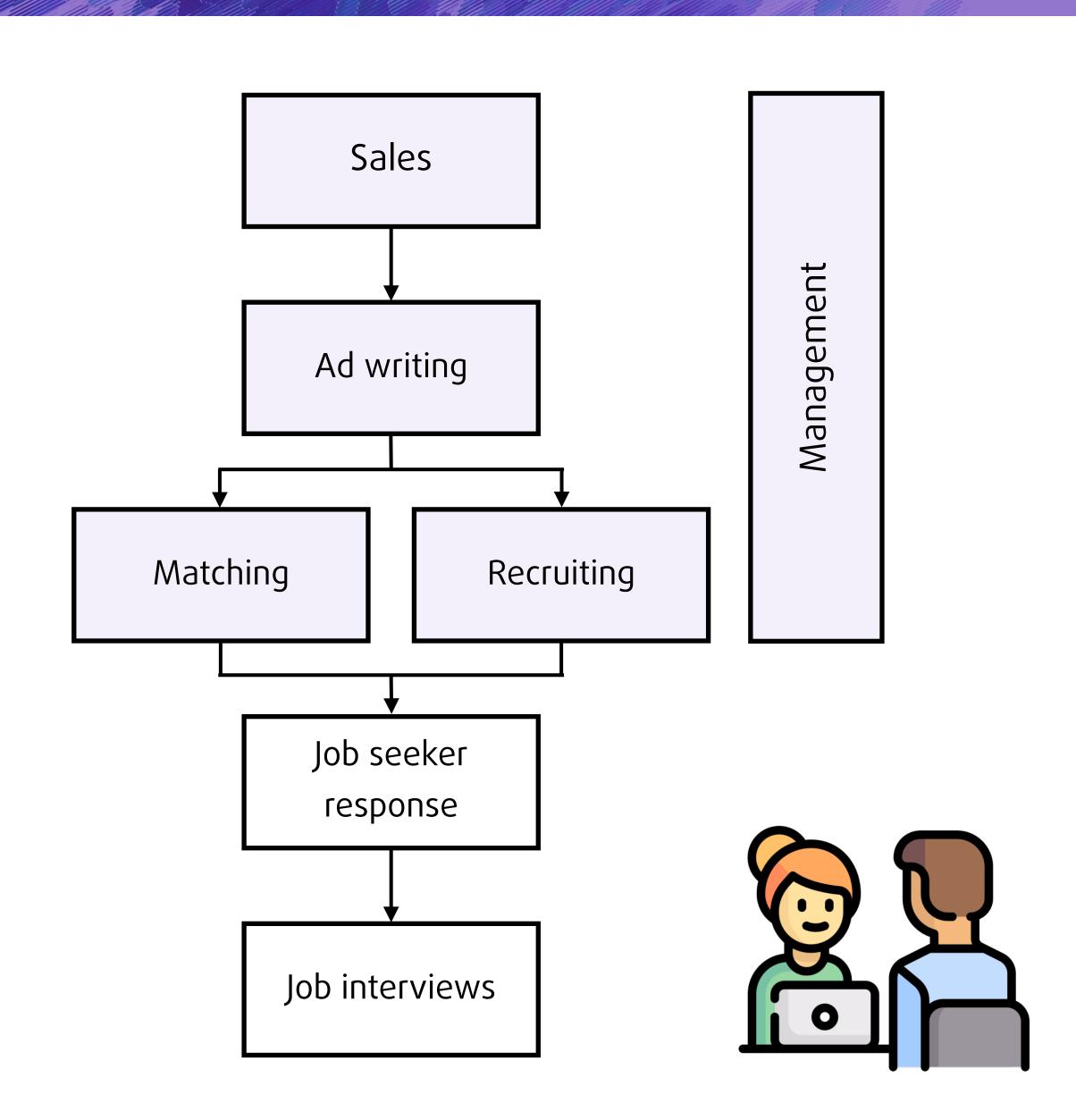
- 26 interviews completed
- Divided over different departments involved in matching process
- Includes management and regular employees

Job seekers

- 15-20 interviews scheduled

Companies

- 5-10 interviews scheduled

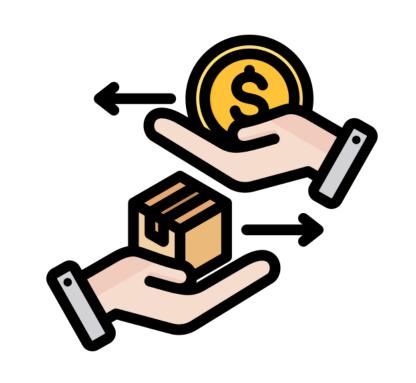


MAPPING STAKEHOLDER NEEDS TO FAIRNESS METRICS

- Interviews are tailored to each interviewee
- Typical interview elements
 - What does fairness in algorithmic hiring mean to them?
 - Sharing our definition
 - Interviewees provide examples of unfair situations from experience
 - Getting their feedback on our example scenarios of unfairness
 - Brainstorming on how we could/should measure fairness
 - Brainstorming on how we could/should mitigate biases



- Sales (= are the first to discuss the job opening)
 - Age discrimination
 - Customers prefer **younger** or **older** candidates
 - Gender
 - Customers reveal the mental model of their ideal candidate by referring to them as "he" or "she"
 - Customers attempt to find out whether female candidates already have kids or are planning to (to avoid paying for maternity leave)
 - Ethnicity / country of origin
 - Explicit rejection of candidates with specific ethnicity or country of origin
 - Requests for candidates that speak **fluent Danish**



Ad writing

- Core task is to write better job ads in collaboration with the customer
- Part of this involves removing
 discriminative language (e.g., gendered terms)

Recruiters

 Can often tell from a blind resume what the likely sensitive attributes of the candidate are

Masculine-coded	Feminine-coded
Headstrong	Compassionate
Fearless	Understanding
Competitive	Nurturing
Driven	Interpersonal
Self-reliant	Kind
Dominant	Agreeable
Greedy	Affectionate

Gaucher, D., Friesen, J., & Kay, A. C. (2011). Evidence that Gendered Wording in Job Advertisements Exists and Sustains Gender Inequality. *Journal of Personality and Social Psychology*, 101(1), 109.

- Emergent definition of fairness from the interviews
 - For a given job, if there are N **qualified** candidates in the set of available job seekers, they should all have the **same chance of being exposed to/contacted by** the recruiters, regardless of their sensitive attributes
 - ★ Points to notion of **Individual fairness**
 - * Strong focus on qualifications!
 - * "Exposed to" and "contacted by" are not the same (although the recruiters see them as the same)
 - ★ They are not aware of the algorithmic biases that could be present in the recommendation/search results they are presented with
 - ★ They acknowledge they are biased but at the same time not question how this impacts their decision-making

- Thoughts on **measuring** fairness
 - Compare recommendation/search results to group proportions for a sensitive attribute
 - * Whole population, resumés in the job database, specific industry, specific industry sector, similar positions
 - Consider **response rate** in this comparison
 - ★ Proportion of group A in set of contacted candidates may be different from A's share among the positive responses
 - Fairness depends on size of the candidate pool
 - ★ Smaller pools are harder to make fair
 - Some divergent opinions on fairness
 - ★ "If the set of contacted candidates are all qualified, then it is fair."

FUTURE WORK

Next steps

- Interviews with job seekers
- Interviews with companies
- Mapping findings to fairness metrics

To what extent do you agree that you have been treated unfairly while job seeking due to the following?

