RSLIS at INEX 2011 Social Book Search track

Toine Bogers Kirstine Wilfred Christensen Birger Larsen

Royal School of Library & Information Science / DBC Copenhagen, Denmark

Outline

- Methodology
 - Pre-processing
 - Indexing & topics
- Content-based retrieval
- Social re-ranking
- Submitted runs
- Discussion

Methodology

Pre-processing

- Removed 22 XML fields not likely to contribute to retrieval
 - Example: <image>, <listprice>, <binding>
- Retained 19 content-bearing XML fields
 - <isbn>, <title>, <publisher>, <editorial>,
 <creator>, <series>, <award>, <character>,
 <place>, <blurber>, <epigraph>, <firstwords>,
 <lastwords>, <quotation>, <dewey>, <subject>,
 <browseNode>, <review>, and <tag>

Indexing

- Created six different indexes
 - All fields (all-doc-fields)
 - All 19 content-bearing XML fields
 - Metadata (metadata)
 - Immutably tied to the book, provided by publisher
 - <title>, <publisher>, <editorial>, <creator>,
 <series>, <award>, <character>, and <place>

Indexing

- Content (content)
 - Fields that contain some part of the book text
 - <blurber>, <epigraph>, <firstwords>,<lastwords>, and <quotation>
- Controlled metadata (controlled-metadata)
 - Subject descriptions curated by library professionals
 - <browseNode>, <dewey>, and <subject>

Indexing

- Tags (tags)
 - User-generated subject descriptions
 - <tag>
- User reviews
 - Book-centric index reviews (all reviews belonging to the same book aggregated into a single representation)
 - Review-centric index reviews-split (each review indexed separately)

Topics

- Four different topic representations
 - Title (title)
 - Group (group)
 - Narrative (narrative)
 - All three topic fields combined (all-topic-fields)

Content-based retrieval

- Pairwise combinations of all indexes and topic representations
 - 6 indexes × 4 representations = 24 different runs
- Algorithm
 - Language modeling using JM smoothing
 - = λ optimized in steps of 0.1 in [0, 1] range
 - Stopword filtering & Krovetz stemming

Results

Document fields	Topic fields				
	title	narrative	group	all-topic-fields	
metadata	0.2756	0.2660	0.0531	0.3373	
content	0.0083	0.0091	0.0007	0.0096	
controlled-metadata	0.0663	0.0481	0.0235	0.0887	
tags	0.2848	0.2106	0.0691	0.3334	
reviews	0.3020	0.2996	0.0773	0.3748	
all-doc-fields	0.2644	0.3445	0.0900	0.4436	

Social re-ranking

• Tags

- Tag index tags performed well
- Reviews
 - Book-centric index reviews performed well
 - What about the review-centric index reviewssplit?

- Review-centric retrieval
 - I. Retrieve individual reviews
 - 2. Aggregate scores for individual reviews into a single relevance score for each occurring book
 - Similar to results fusion in IR!
 - Can use methods like CombMAX, CombSUM, etc.

- Unweighted review fusion
 - CombMAX, CombSUM, and CombMNZ
- Weighted review fusion
 - Weighting based on review helpfulness

 $score_{weighted}(i) = score_{org}(i) \times \frac{helpful vote count}{total vote count}$

Weighting based on normalized book ratings

$$score_{weighted}(i) = score_{org}(i) \times \frac{r}{5}$$

Results

Runs	Topic fields				
Kulls	title	narrative	group	all-topic-fields	
CombMAX	0.3117	0.3222	0.0892	0.3457	
CombSUM	0.3377	0.3185	0.0982	0.3640	
CombMNZ	0.3350	0.3193	0.0982	0.3462	
CombMAX - Helpfulness	0.2603	0.2842	0.0722	0.3124	
CombSUM - Helpfulness	0.2993	0.2957	0.0703	0.3204	
CombMNZ - Helpfulness	0.3083	0.2983	0.0756	0.3203	
CombMAX - Ratings	0.2882	0.2907	0.0804	0.3306	
CombSUM - Ratings	0.3199	0.3091	0.0891	0.3332	
CombMNZ - Ratings	0.3230	0.3080	0.0901	0.3320	
reviews	0.3020	0.2996	0.0773	0.3748	

reviews-split

Submitted runs

Submitted runs

- Four submitted runs
 - Run I: title.all-doc-fields
 - Run 2: all-topic-fields.all-doc-fields
 - Run 3: title.reviews-split.CombSUM
 - Run 4: all-topic-fields.reviews-split.CombSUM

Results

- Best-performing runs
 - Run 2: all-topic-fields.all-doc-fields
 - Run 4: all-topic-fields.reviews-split.CombSUM
- Means there is hope for the social re-ranking approach...

Discussion

What did we learn?

- Best performance when combining all available information
 - Support for principle of polyrepresentation
 - Ingwersen (1996) and Belkin (1993)
- User-generated metadata >> curated metadata
- Book-centric vs. review-centric undecided
 - Helpfulness and ratings do not contribute enough in the current approach

