
RSLIS at INEX 2011
Social Book Search track

Toine Bogers
Kirstine Wilfred Christensen

 Birger Larsen

Royal School of Library & Information Science / DBC
Copenhagen, Denmark



Outline

• Methodology

- Pre-processing

- Indexing & topics

• Content-based retrieval

• Social re-ranking

• Submitted runs

• Discussion



Methodology



Pre-processing

• Removed 22 XML fields not likely to contribute 
to retrieval

- Example: <image>, <listprice>, <binding>

• Retained 19 content-bearing XML fields

- <isbn>, <title>, <publisher>, <editorial>, 
<creator>, <series>, <award>, <character>, 
<place>, <blurber>, <epigraph>, <firstwords>, 
<lastwords>, <quotation>, <dewey>, <subject>, 
<browseNode>, <review>, and <tag>



Indexing

• Created six different indexes

- All fields (all-doc-fields)

‣ All 19 content-bearing XML fields

- Metadata (metadata)

‣ Immutably tied to the book, provided by publisher

‣ <title>, <publisher>, <editorial>, <creator>, 
<series>, <award>, <character>, and <place>



Indexing

- Content (content)

‣ Fields that contain some part of the book text

‣ <blurber>, <epigraph>, <firstwords>, 
<lastwords>, and <quotation>

- Controlled metadata (controlled-metadata)

‣ Subject descriptions curated by library 
professionals

‣ <browseNode>, <dewey>, and <subject>



Indexing
- Tags (tags)

‣ User-generated subject descriptions

‣ <tag>

- User reviews

‣ Book-centric index reviews (all reviews belonging 
to the same book aggregated into a single 
representation)

‣ Review-centric index reviews-split (each review 
indexed separately)



Topics

• Four different topic representations

- Title (title)

- Group (group)

- Narrative (narrative)

- All three topic fields combined (all-topic-fields)



Content-based retrieval



Approach

• Pairwise combinations of all indexes and topic 
representations

- 6 indexes × 4 representations = 24 different runs

• Algorithm

- Language modeling using JM smoothing

- λ optimized in steps of 0.1 in [0, 1] range

- Stopword filtering & Krovetz stemming



ResultsTable 1. Results of the 24 different content-based retrieval runs on the training set using
NDCG as evaluation metric. Best-performing runs for each topic representation are printed
in bold. The boxed run is the best overall.

Document fields
Topic fields

title narrative group all-topic-fields
metadata 0.2756 0.2660 0.0531 0.3373
content 0.0083 0.0091 0.0007 0.0096
controlled-metadata 0.0663 0.0481 0.0235 0.0887
tags 0.2848 0.2106 0.0691 0.3334
reviews 0.3020 0.2996 0.0773 0.3748

all-doc-fields 0.2644 0.3445 0.0900 0.4436

4 Social Re-ranking

The inclusion of user-generated metadata in the Amazon/LibraryThing collection
gives the track participants the opportunity to examine the effectiveness of using
social features to re-rank or improve the initial content-based search results. One
such a source of social data are the tags assigned by LibraryThing users to the
books in the collection. The results in the previous section showed that even when
treating these as a simple content-based representation of the collection using our
tags index, we can achieve relatively good performance.

In this section, we turn our attention to the book reviews entered by Amazon’s
large user base. We mentioned in Section 2.1 that we indexed the user reviews from
the <review> fields in two different ways: (1) all user reviews belonging to a single
book were combined in a single document representation for that book (reviews),
and (2) each book review was indexed and retrieved separately (reviews-split). The
results of the content-based runs in the previous section showed that a book-centric
approach to indexing reviews provided good performance.

Review-centric retrieval However, all user reviews are not equal. Some reviewers
provide more accurate, in-depth reviews than others, and in some cases reviews
may be even be misleading or deceptive. This problem of spam reviews on online
shopping websites such as Amazon.com is well-documented [3]. This suggests that
indexing and retrieving reviews individually and then aggregating the individually
retrieved reviews could be beneficial by matching the best, most topical reviews
against our topics.

Our review-centric retrieval approach works as follows. First, we index all re-
views separately in our reviews-split index. We then retrieve the top 1000 individual
reviews for each topic (i.e., this is likely to be a mixed of different reviews for dif-
ferent books). This can result in several reviews covering the same book occurring
in our result list, which then need to be aggregated into a single relevance score
for each separate book. This problem is similar to the problem of results fusion in
IR, where the results of different retrieval algorithms on the same collection are
combined. This suggest the applicability of standard methods for results fusion as



Social re-ranking



Approach

• Tags

- Tag index tags performed well

• Reviews

- Book-centric index reviews performed well

- What about the review-centric index reviews-
split?



Approach

• Review-centric retrieval

1. Retrieve individual reviews

2. Aggregate scores for individual reviews into a 
single relevance score for each occurring book

‣ Similar to results fusion in IR!

‣ Can use methods like CombMAX, CombSUM, 
etc.



Approach
- Unweighted review fusion

‣ CombMAX, CombSUM, and CombMNZ

- Weighted review fusion

‣ Weighting based on review helpfulness

‣ Weighting based on normalized book ratings

introduced by [4]. Of the six methods they investigated, we have selected the fol-
lowing three for aggregating the review-centric retrieval results.

– The CombMAX method takes the maximum relevance score of a document
from among the different runs. In our case, this means that for each book in
our results list, we take the score of the highest-retrieved individual review to
be the relevance score for that book.

– The CombSUM method fuses runs by taking the sum of the relevance scores
for each document separately. In our case, this means that for each book in our
results list, we take the sum of the relevance scores for all reviews referring to
that particular book.

– The CombMNZ method does the same as the CombSUM method, but boost
thes sum of relevance scores by the number of runs that actually retrieved the
document. In our case, this means that for each book in our results list, we take
the sum of the relevance scores for all reviews referring to that particular book,
and multiply that by the number of reviews that were retrieved for that book.

Helpfulness of reviews One of the more popular aspects of user reviewing process
on Amazon.com is that reviews can be marked as helpful or not helpful by other
Amazon users. By using this information, we could ensure that the most helpful
reviews have a better chance of being retrieved. We can use this information to im-
prove the retrieval results by assigning higher weights to the most helpful reviews
and thereby boosting the books associated with those reviews. The assumption be-
hind this is that helpful reviews will be more accurate and on-topic than unhelpful
reviews.

We estimate the helpfulness of a review by dividing the number of votes for
helpfulness by the total number of votes for that review. For example, a review that
3 out of 5 people voted as being helpful would have a helpfulness score of 0.6.
For each retrieved review i we then obtain a new relevance score scoreweighted(i)
by multiplying that review’s original relevance score scoreorg(i) with its helpfulness
score as follows:

scoreweighted(i) = scoreorg(i)⇥
helpful vote count
total vote count

(1)

This will results in the most helpful reviews having a bigger influence on the
final rankings and the less helpful reviews having a smaller influence. We combine
this weighting method with the three fusion methods CombMAX, CombSUM, and
CombMNZ to arrive at a weighted fusion approach.

Book ratings In addition, users can also assign individual ratings from zero to five
stars to the book they are reviewing, suggesting an additional method of taking into
account the quality of the books to be retrieved. We used these ratings to influence
the relevance scores of the retrieved books. For each retrieved review i we obtain
a new relevance score scoreweighted(i) by multiplying that review’s original relevance
score scoreorg(i) with its normalized rating r as follows:

scoreweighted(i) = scoreorg(i)⇥
r
5

(2)

introduced by [4]. Of the six methods they investigated, we have selected the fol-
lowing three for aggregating the review-centric retrieval results.

– The CombMAX method takes the maximum relevance score of a document
from among the different runs. In our case, this means that for each book in
our results list, we take the score of the highest-retrieved individual review to
be the relevance score for that book.

– The CombSUM method fuses runs by taking the sum of the relevance scores
for each document separately. In our case, this means that for each book in our
results list, we take the sum of the relevance scores for all reviews referring to
that particular book.

– The CombMNZ method does the same as the CombSUM method, but boost
thes sum of relevance scores by the number of runs that actually retrieved the
document. In our case, this means that for each book in our results list, we take
the sum of the relevance scores for all reviews referring to that particular book,
and multiply that by the number of reviews that were retrieved for that book.

Helpfulness of reviews One of the more popular aspects of user reviewing process
on Amazon.com is that reviews can be marked as helpful or not helpful by other
Amazon users. By using this information, we could ensure that the most helpful
reviews have a better chance of being retrieved. We can use this information to im-
prove the retrieval results by assigning higher weights to the most helpful reviews
and thereby boosting the books associated with those reviews. The assumption be-
hind this is that helpful reviews will be more accurate and on-topic than unhelpful
reviews.

We estimate the helpfulness of a review by dividing the number of votes for
helpfulness by the total number of votes for that review. For example, a review that
3 out of 5 people voted as being helpful would have a helpfulness score of 0.6.
For each retrieved review i we then obtain a new relevance score scoreweighted(i)
by multiplying that review’s original relevance score scoreorg(i) with its helpfulness
score as follows:

scoreweighted(i) = scoreorg(i)⇥
helpful vote count
total vote count

(1)

This will results in the most helpful reviews having a bigger influence on the
final rankings and the less helpful reviews having a smaller influence. We combine
this weighting method with the three fusion methods CombMAX, CombSUM, and
CombMNZ to arrive at a weighted fusion approach.

Book ratings In addition, users can also assign individual ratings from zero to five
stars to the book they are reviewing, suggesting an additional method of taking into
account the quality of the books to be retrieved. We used these ratings to influence
the relevance scores of the retrieved books. For each retrieved review i we obtain
a new relevance score scoreweighted(i) by multiplying that review’s original relevance
score scoreorg(i) with its normalized rating r as follows:

scoreweighted(i) = scoreorg(i)⇥
r
5

(2)



Results

This will results in the positive reviews having a bigger influence on the final
rankings and the negative reviews having a smaller influence. An open question
here is whether positive reviews are indeed a better source of book recommen-
dations than negative reviews. We combine this weighting method with the three
fusion methods CombMAX, CombSUM, and CombMNZ to arrive at a weighted
fusion approach.

Table 2 shows the results of the different social ranking runs for the optimal �
values. The results of the runs using the book-centric reviews index are also included
for convenience.

Table 2. Results of the 9 different social ranking runs with the reviews-split index on the
training set using NDCG as evaluation metric. The results of the runs using the book-centric
reviews index are also included for convenience. Best-performing runs for each topic rep-
resentation are printed in bold. The boxed run is the best overall using the reviews-split

index.

Runs
Topic fields

title narrative group all-topic-fields

CombMAX 0.3117 0.3222 0.0892 0.3457

CombSUM 0.3377 0.3185 0.0982 0.3640
CombMNZ 0.3350 0.3193 0.0982 0.3462
CombMAX - Helpfulness 0.2603 0.2842 0.0722 0.3124
CombSUM - Helpfulness 0.2993 0.2957 0.0703 0.3204
CombMNZ - Helpfulness 0.3083 0.2983 0.0756 0.3203
CombMAX - Ratings 0.2882 0.2907 0.0804 0.3306
CombSUM - Ratings 0.3199 0.3091 0.0891 0.3332
CombMNZ - Ratings 0.3230 0.3080 0.0901 0.3320
reviews 0.3020 0.2996 0.0773 0.3748

What do the results of the social ranking approaches tell us? The best overall
social ranking approach is the unweighted CombSUM method using all available
topic fields, with a NDCG score of 0.3640. Looking at the unweighted fusion meth-
ods, we see that our results confirm the work of, among others [4] and [5], as
the CombSUM and CombMNZ fusion methods tend to perform better than Comb-
MAX. For the weighted fusion approaches where the weights are derived from
information about review helpfulness and book ratings we see the same patterns
for these three methods: CombSUM and CombMNZ outperform CombMAX.

Overall, however, the unweighted fusion methods outperform the two weighted
fusion methods. This is not in line with previous research [6,7], where the optimal
combination of weighted runs tends to outperform the unweighted variants. This
suggests that our weighting methods using helpfulness and ratings are not opti-
mal. Apparently, reviews that are helpful for users are not necessarily helpful for a
retrieval algorithm. Analogously, increasing the influence of positive reviews over

re
vi

ew
s-

sp
lit



Submitted runs



Submitted runs

• Four submitted runs

- Run 1: title.all-doc-fields

- Run 2: all-topic-fields.all-doc-fields

- Run 3: title.reviews-split.CombSUM

- Run 4: all-topic-fields.reviews-split.CombSUM



Results

• Best-performing runs

- Run 2: all-topic-fields.all-doc-fields

- Run 4: all-topic-fields.reviews-split.CombSUM

• Means there is hope for the social re-ranking 
approach...



Discussion



What did we learn?

• Best performance when combining all available 
information

- Support for principle of polyrepresentation

‣ Ingwersen (1996) and Belkin (1993)

• User-generated metadata ≫ curated metadata

• Book-centric vs. review-centric undecided

- Helpfulness and ratings do not contribute 
enough in the current approach



Questions?


