Comparing Collaborative and Content-based Filtering for Recommendation on Social Bookmarking Websites

Toine Bogers and Antal van den Bosch

ILK / TiCC
Tilburg University
Overview

- Recommendation task + data sets
- What information sources do we have?
 - Usage patterns
 - Tags
 - Metadata
- Recommendations for recommendation

 - What is it?
 - What did we do with it?
 - What did we find?
Recommendation task & data sets

• Focused on Top-N item recommendation for social bookmarking websites

• Four data sets
 – del.icio.us (bookmarks)
 – BibSonomy (bookmarks)
 – citeulike (scientific articles)
 – BibSonomy (scientific articles)

• Evaluated using Mean Average Precision (MAP)
Usage patterns

What is it?

• Represent the items that users have added to their profiles

• Profile vectors
 – User profiles
 – Item profiles

• No explicit ratings available
 – Only binary information (1 or 0)
 – Or rather: unary!
Usage patterns
What did we do with it?

• Baseline: standard k-NN algorithm
 – User-based CF vs. item-based CF
 – Cosine similarity
 – Unweighted vs. IDF-weighted profile vectors
Usage patterns
What did we find?

• User-based vs. item-based
 – User-based CF slightly better on three data sets
 – Not statistically significant
 – Item-based CF significantly better on CiteULike

• Bookmarks vs. scientific articles
 – Recommending bookmarks is more difficult
 – More open domain and greater topical diversity

• IDF-weighting had no effect
Tags
What is it?

• Tags are keywords assigned to an item by a user

• Profile vectors
 – User tag profiles
 – Item tag profiles

• Values are tag occurrence counts
Tags
What did we do with it?

• Tag overlap between users/items as similarity
 – User-based vs. item-based filtering
 – Similarity metrics
 • Jaccard overlap
 • Dice’s coefficient
 • Cosine similarity
 – Unweighted vs. IDF-weighted profiles (for cosine)
Tags
What did we find?

• CF with tag overlap
 – User-based CF performs significantly worse
 – Item-based CF performs much much better
 • Often statistically significant improvements
 – Except on CiteULike: CF without tags better

• Similarity metric relatively unimportant
 – Cosine similarity similarity slightly better

• IDF-weighting again had no effect
Metadata
What is it?

• Textual description of different aspects of an item

• Examples
 – Bookmarks: <TITLE>, <URL>, <DESCRIPTION>, ...
 – Scientific articles: <JOURNAL>, <YEAR>, <ABSTRACT>, ...

• Two types of metadata
 – Intrinsic, i.e., directly relating to the content
 • E.g., <TITLE>, <DESCRIPTION>, <JOURNAL>, <AUTHOR>, ...
 – Extrinsic, i.e., administrative information
 • E.g., <PAGES>, <MONTH>, <EDITION>, ...
Metadata
What did we do with it?

• Content-based filtering
 – Profile-centric matching
 • Collate all of user’s metadata into a user profile
 • All metadata assigned to an item → item profile
 • Match and rank item profiles to user profiles
Metadata

What did we do with it?

- **Profile-centric matching**
 - Collate all of user's metadata into a user profile
 - All metadata assigned to an item → item profile
 - Match and rank item profiles to user profiles

- **Post-centric matching**
 - Construct metadata representations of each post
 - Match each of the user’s posts against all other posts
 - Match, rank, and aggregate all retrieved posts
Metadata

What did we do with it?

- **Hybrid filtering**
 - Combine CF with metadata-based approach
 - User-based CF with metadata-based similarities
 - Textual similarity between user profiles
 - Item-based CF with metadata-based similarities
 - Textual similarity between item profiles
Metadata
What did we find?

• Content-based filtering
 – Profile-level matching better than post-level

• Hybrid filtering
 – Item-based CF with metadata similarities works best

• No clear winner over all data sets

• Metadata
 – All intrinsic metadata combined works best
 – Best fields: <TAGS>, <TITLE>, <AUTHOR>, <URL>, <ABSTRACT>
 – Extrinsic metadata contributes little
Recommendations for recommendation

• Using tag overlap in item-based CF works well
 – Easy to implement/adapt

• Metadata-based recommendation often better than CF
 – Not significantly
 – No clear winning algorithm
 – Easiest to implement using existing search engine

• Recommender fusion is promising
 – Investigate different combination techniques
Questions? Comments? Recommendations?
Recommendation task

Given a...

USER
- People like me

ITEM
- Item recommendation
- More like this
- Tag suggestion

TAG
- People profiling
- Tag suggestion
- Depth browsing

Domain experts
- Personalized search
Data sets

<table>
<thead>
<tr>
<th></th>
<th>Bookmarks</th>
<th>Scientific articles</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Delicious</td>
<td>BibSonomy</td>
</tr>
<tr>
<td># users</td>
<td>1,243</td>
<td>192</td>
</tr>
<tr>
<td># items</td>
<td>152,698</td>
<td>11,165</td>
</tr>
<tr>
<td># tags</td>
<td>42,820</td>
<td>13,233</td>
</tr>
<tr>
<td># posts</td>
<td>238,070</td>
<td>29,096</td>
</tr>
</tbody>
</table>

- Evaluated using Mean Average Precision (MAP)