Using Language Modeling for Spam Detection in Social Reference Manager Websites

Toine Bogers and Antal van den Bosch

DIR 2009

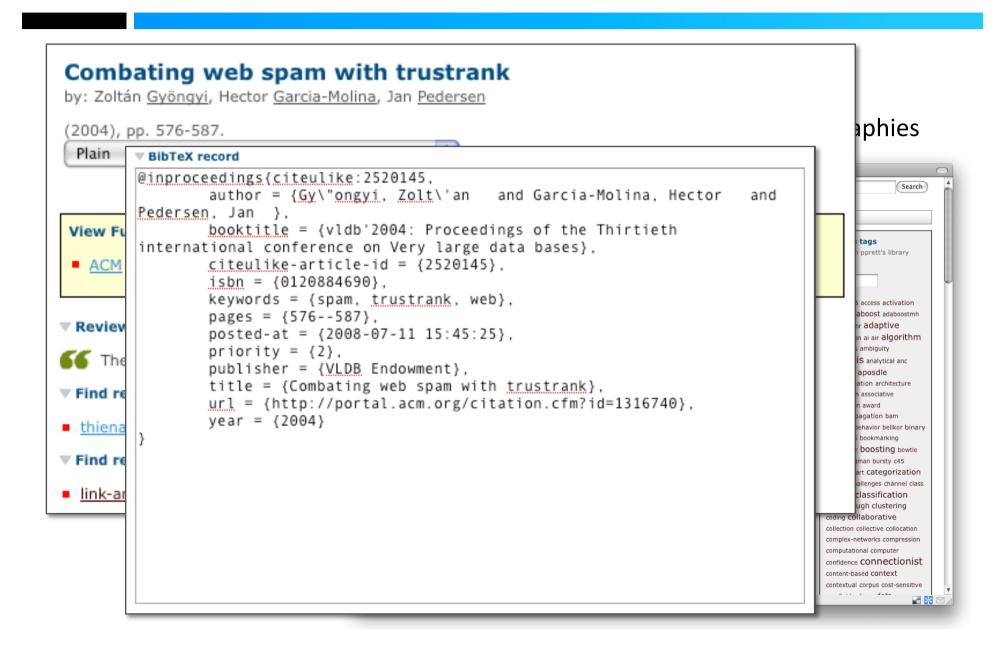
February 3, 2009

Outline

• Introduction

- Methodology
- Our approach
- Results
- Discussion

Social reference managers



Spam

- In a social bookmarking context:
 - Users posting content and tags designed to mislead others
- Open questions
 - How big of a problem is it?
 - How harmful to which task?
 - How can we deal with it?
 - Little research done

Outline

- Introduction
- Methodology
- Our approach
- Results
- Discussion

Task

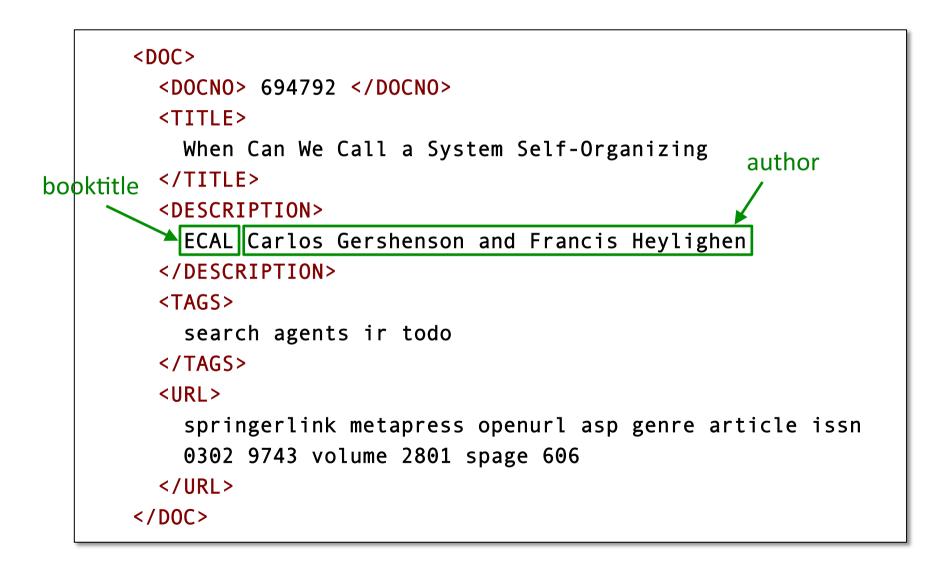
- Task definition take from the 2008 Discovery Challenge
 - Annually organized data mining competitions
 - Two tasks in 2008
 - Tag recommendation
 - Spam detection
- Spam detection task
 - Learn a model that predicts spam at the user level
 - Equal to detecting spam users
 - Organizers provided a pre-labeled data set
 - All of a spam user's posts are labeled as spam

	CiteULike spam – user block 02						
	🔀 🖬 🔝	http://buffy.local/citeulike-spam/spam.php	k ▼	০ ০			
Most Visited *	Hotmail Gmail Blog	ines My del.icio.us Google News Digg E Canucks.com TVGids.nl	i dr.dk i Trouw recommender Reisblog D	MI.dk			
-							
PennAs	ROCR: C SF Source	ceF 🗋 High Pe 🗋 The igra 😤 Science 🗋 Introdu	ic 🔞 ECML P 🚾 antbear 🗋 Cit	teU 😣 🕨 🛒			
		Progress: 8 / 2600 (0.3% judged)					
Previous us	ser:						
		(No spam) (Spam!)					
	User: derter						
ſ	User: <u>dartar</u>						
	Article ID	Title	Tags				
	1126	Analysis of a very large web search engine query	logging, query,				
		log	search_engines, web_epistemology				
<u>3450</u> <u>4377</u> <u>45818</u>		Propagation of Trust and Distrust	ranking, trust, web,				
			web_epistemology				
		Context in Web Search	search_engines, web,				
			web_epistemology				
		When to use Google for health queries?	authority, query,				
			search_engines,				
			web_epistemology				
		Hourly analysis of a very large topically	logging, query,				
		categorized web query log	search_engines, web_epistemology				
	web_epistemology						

Data representation

- BibSonomy
 - Treated bookmarks and BibTeX the same
 - Divide the metadata into 4 different fields: TITLE, DESCRIPTION, TAGS, and URL
 - Normalized the URL (tokenization, removal of common prefixes/suffixes)
- CiteULike
 - Clean posts had metadata, but most spam posts did not
 - Used only TAGS metadata for a fair comparison

Example of a clean post



Experimental setup & evalution

• Experimental setup

- BibSonomy: pre-defined split in training and test material
 - Official training material divided in 80-20 split on users (38,920 users)

 80% training set 	(25,372 users)
 20% validation set for parameter optimization 	(6,343 users)
 Official test set 	(7,205 users)
CiteULike	
 60% training set 	(4,160 users)
 20% validation set for parameter optimization 	(520 users)
• 20% test set	(520 users)

- Evaluation metric
 - AUC (Area Under the ROC Curve)

Outline

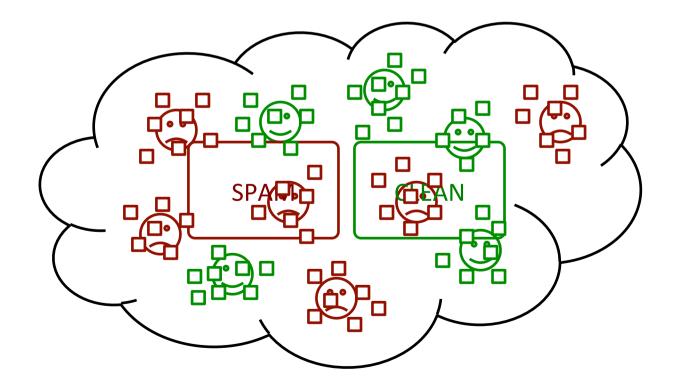
- Introduction
- Methodology
- Our approach
- Results
- Discussion

Our approach

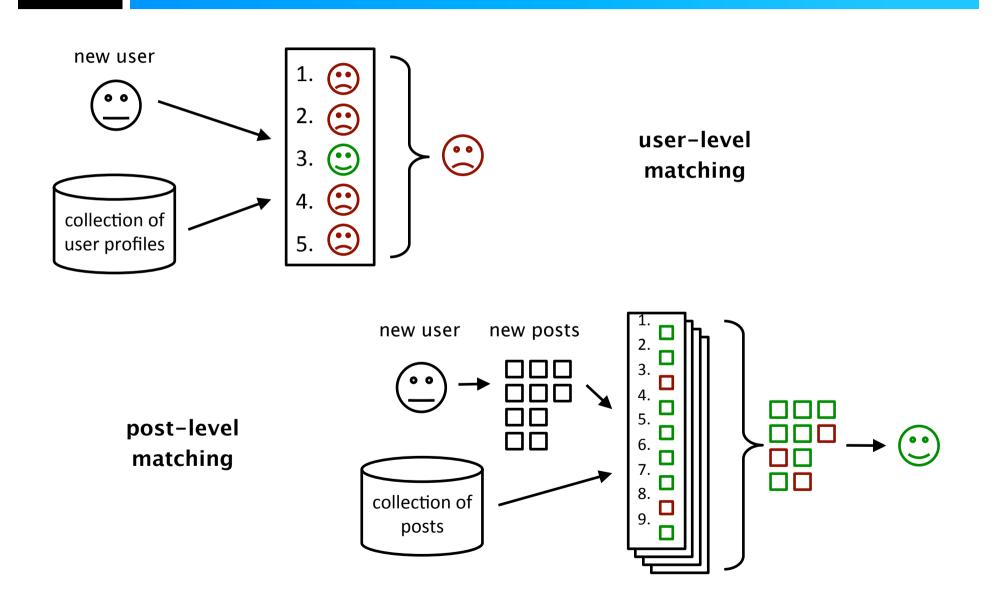
- Inspired by Mishne et al. (2005) for blog spam
- Approach based on similar language use of similar users
 - We compare language models of spam and 'genuine' content
- Two-stage approach
 - Determining most similar matching content using language models
 - Let the most similar matches determine the spam label

Matching language models

• At what level should we compare our language models?



Matching language models



Matching language models

- (Dis)similarity between LMs calculated using KL-divergence
 - Used Indri Toolkit for experiments
- Experimented with all fields combined and all 4 fields separately
 - 9 different matchings

Spam classification

- After the matching phase we get a normalized ranking
 - Each user/post has a score between 0 and 1 and a binary spam label
- Questions
 - How many of the top *k* matches help determine the final label?
 - Optimized on AUC, from k = 1 to k = 1000
 - How do the top k matches contribute towards the figure abel?
 - Simplest: take top label
 - A bit more sophisticated: take average label among t k
 - What we did: take average label, weighted by normaiced score

$$score(u_i) = \frac{\sum_{r=1, r \neq i}^{k} sim(u_i, u_r) \cdot label(u_r)}{k} \begin{array}{c} 5. & \textcircled{2} \\ 6. & \textcircled{2} \\ 7. & \textcircled{2} \end{array} \begin{array}{c} & \swarrow \\ & & \swarrow \end{array} \begin{array}{c} & \swarrow \\ & & & \swarrow \end{array} \begin{array}{c} & \swarrow \\ & & & & \swarrow \end{array} \begin{array}{c} & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & \\ & & & & \\ & & & \\ & & & &$$

2.

10.

- At the post level we get per-post weighted average ores
 - Simple average of per-post scores is then calculated each test user

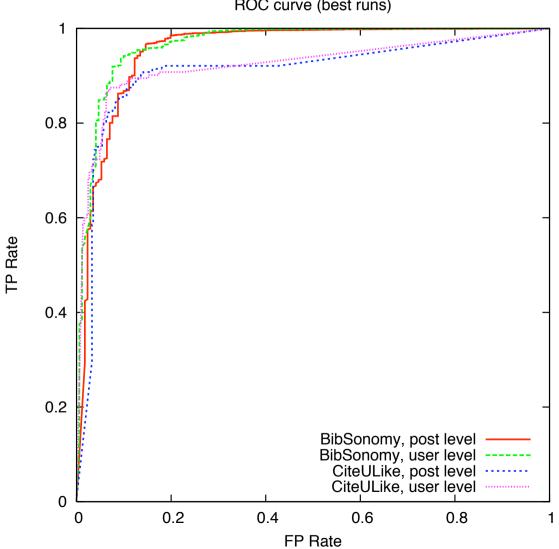
Outline

- Introduction
- Methodology
- Our approach
- Results
- Discussion

Results

		User level		Post level			
Collection	Fields	Validation	Test	k	Validation	Test	k
BibSonomy	all fields	0.9682	0.9661	235	0.9571	0.9536	50
(matching	title	0.9290	0.9450	150	0.9055	0.9287	45
fields)	description	0.9055	0.9452	100	0.8802	0.9371	100
	tags	0.9724	0.9073	110	0.9614	0.9088	60
	URL	0.8785	0.8523	35	0.8489	0.8301	8
BibSonomy	all fields	0.9682	0.9661	235	0.9571	0.9536	50
(single	title	0.9300	0.9531	140	0.9147	0.9296	50
fields in	description	0.9113	0.9497	90	0.8874	0.9430	75
evaluation sets)	tags	0.9690	0.9381	65	0.9686	0.9251	95
	URL	0.8830	0.8628	15	0.8727	0.8369	15
CiteULike	tags	0.9329	0.9240	5	0.9262	0.9079	5

Results



ROC curve (best runs)

Outline

- Introduction
- Methodology
- Our approach
- Results
- Discussion

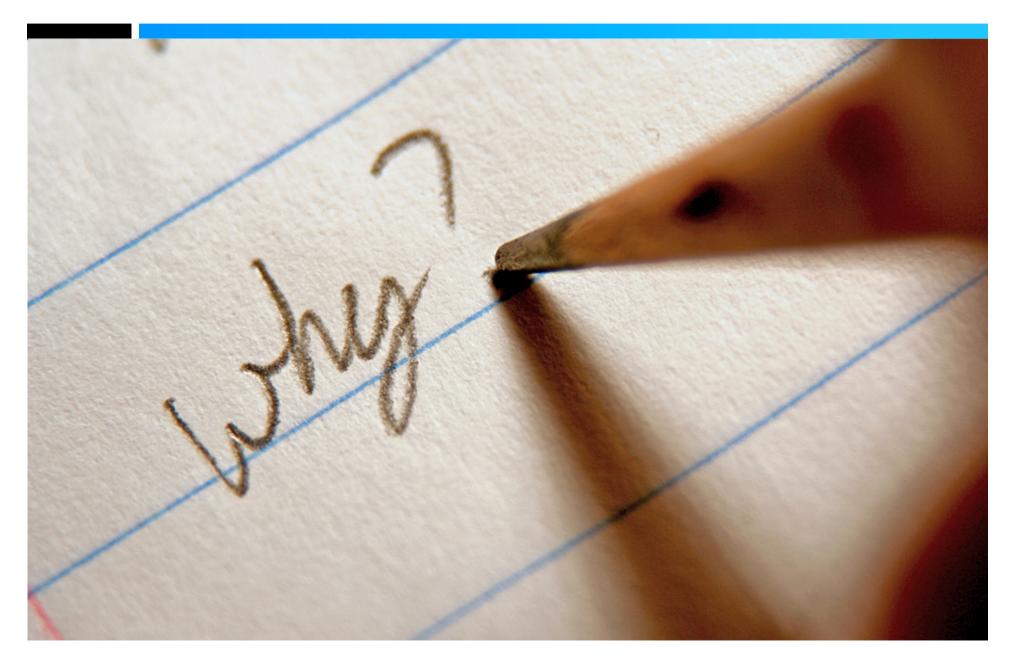
Discussion

- Straightforward approach with >90% score
- User-level detection works better than post-level detection
 - Spam labels assigned at the user-level
 - Users are a better aggegration level; less sparse
- Using only matching fields performs slightly lower than all collection fields
 - Probably because of less data
 - Using all fields is the overall best approach on (the test set)
- Approach works well on both data sets
- Easy to implement on top of existing search engine

Comparison with related work

- Comparison to other Discovery Challenge submissions
 - Eight participants scored over the baseline
 - Score of 0.9661 would have achieved third place
 - Four SVM approaches; one better then ours
 - Ridge regression approach performed better than ours
 - Naïve Bayes and five other machine learning approaches performed worse

Questions? Comments? Suggestions?



Spam classification

- Not every new user has matching users/posts
 - Missing metadata or outlier users/posts
 - Only 0.7% (44 out of 6343 validation users) had no matches
 - Default prediction is 'clean'
 - These missing users were clean in 84% of the cases in the validation set

Data sets

	BibSonomy	CiteULike	
posts	2,102,509	224,987	
bookmarks, spam	1,766,334		
bookmarks, clean	177,546		
articles, spam	292	70,168	
articles, clean	158,335	154,819	
users	38,920	5,200	
spam	36,282	1,475	
clean	2,638	3,725	
average posts/user	54.0	43.3	
spam	48.7	47.6	
clean	127.3	41.6	
tags	352,542	82,121	
spam	310,812	43,751	
clean	64,334	45,401	
average tags/post	7.9	4.6	
spam	8.9	7.7	
clean	2.7	3.2	

Example of a spam post

Future work

- Plans for the future
 - Implement and test the class-level approach
- Other possibilities
 - Use extra features like PageRank for bookmarks
 - Direct comparison on CiteULike data set with algorithms like SVMs
 - Evaluate at the post level instead of at the user level
 - But: harder to obtain such spam labeling