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Social reference managers

Combating web spam with trustrank
by: Zoltan Gydngyi, Hector Garcia-Molina, Jan Pedersen

(2004), pp. 576-587.
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Spam

e |n asocial bookmarking context:

— Users posting content and tags designed to mislead others
e (Open questions

— How big of a problem is it?

— How harmful to which task?

— How can we deal with it?

— Little research done
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Task
R

e Task definition take from the 2008 Discovery Challenge
— Annually organized data mining competitions
— Two tasks in 2008
e Tag recommendation
e Spam detection
e Spam detection task
— Learn a model that predicts spam at the user level
— Equal to detecting spam users
— Organizers provided a pre-labeled data set
— All of a spam user’s posts are labeled as spam
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Progress: 8 / 2600 (0.3% judged)

Previous user:

[ No spam | [ Spam! )

User: dartar

Article ID Title Tags

Analysis of a very large web search engine query | logging, query,
log search_engines,
web_epistemology

Propagation of Trust and Distrust ranking, trust, web,
web_epistemology

Context in Web Search search_engines, web,
web_epistemology

When to use Google for health queries? authority, guery,
search_engines,
web_epistemology

Hourly analysis of a very large topically logging, guery,
categorized web query log search_engines,
web_epistemology




Data representation

e BibSonomy
— Treated bookmarks and BibTeX the same

— Divide the metadata into 4 different fields: TITLE, DESCRIPTION, TAGS, and
URL

— Normalized the URL (tokenization, removal of common prefixes/suffixes)

e CiteULike

— Clean posts had metadata, but most spam posts did not
— Used only TAGS metadata for a fair comparison



Example of a clean post

I
<DOC>
<DOCNO> 694792 </DOCNO>
<TITLE>
When Can We Call a System Self-0Organizing suthor
bopktitle </TITLE>
<DESCRIPTION> {/

ECAL|[Carlos Gershenson and Francis Heylighen
</DESCRIPTION>
<TAGS>
search agents ir todo
</TAGS>
<URL>
springerlink metapress openurl asp genre article issn
0302 9743 volume 2801 spage 606
</URL>

</DOC>




Experimental setup & evalution
I

e Experimental setup
— BibSonomy: pre-defined split in training and test material
e Official training material divided in 80-20 split on users (38,920 users)

e 80% training set (25,372 users)

e 20% validation set for parameter optimization (6,343 users)

o Official test set (7,205 users)
— CiteULike

e 60% training set (4,160 users)

e 20% validation set for parameter optimization (520 users)

e 20% test set (520 users)

e Evaluation metric
— AUC (Area Under the ROC Curve)
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Our approach
I

e |nspired by Mishne et al. (2005) for blog spam
e Approach based on similar language use of similar users

— We compare language models of spam and ‘genuine’ content

e Two-stage approach
— Determining most similar matching content using language models
— Let the most similar matches determine the spam label



Matching language models
I

e At what level should we compare our language models?




Matching language models
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Matching language models

e (Dis)similarity between LMs calculated using KL-divergence
— Used Indri Toolkit for experiments

e Experimented with all fields combined and all 4 fields separately
— 9 different matchings

TITLE TITLE
DESCRIPTION DESCRIPTION
TAGS TAGS
URL URL

collection new

(training set) users/posts



Spam classification
- §

e After the matching phase we get a normalized ranking
— Each user/post has a score between 0 and 1 and a binary spam label

e Questions
— How many of the top k matches help determine the final label?

e Optimized on AUC, from k =1 to k = 1000

— How do the top k matches contribute towards{the fznl [abgl?

e Simplest: take top label 2. @
e A bit more sophisticated: take average label anjo3g t@ k
e What we did: take average label, weighted by 1 oHﬂa&d scofe

5. ©
sim(u;,uy) - label(uy) CLEAN
score(uj) = Zr Lr#i v 1" 6. @ >
- 7. ©

— At the post level we get per-post weighted average(@yores
e Simple average of per-post scores is then calcu|ated @ edch fest user

10. & |
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Results

User level Post level
Collection Fields Validation Test k Validation Test k
BibSonomy all fields 0.9682 0.9661 | 235 0.9571 0.9536 | 50
(matching title 0.9290 0.9450 | 150 0.9055 0.9287 | 45
fields) description 0.9055 0.9452 | 100 0.8802 0.9371 | 100
tags 0.9724 0.9073 | 110 0.9614 0.9088 | 60
URL 0.8785 0.8523 | 35 0.8489 0.8301 8
BibSonomy all fields 0.9682 0.9661 | 235 0.9571 0.9536 | 50
(single title 0.9300 0.9531 | 140 0.9147 0.9296 | 50
fields in description 09113 0.9497 | 90 0.8874 0.9430 | 75
evaluation sets) | tags 0.9690 0.9381 | 65 0.9686 0.9251 | 95
URL 0.8830 0.8628 | 15 0.8727 0.8369 | 15
CiteULike tags 0.9329 0.9240 5 0.9262 0.9079 5
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Discussion

e Straightforward approach with >90% score
e User-level detection works better than post-level detection

— Spam labels assigned at the user-level
— Users are a better aggegration level; less sparse
e Using only matching fields performs slightly lower than all
collection fields
— Probably because of less data

— Using all fields is the overall best approach on (the test set)

e Approach works well on both data sets
e Easy to implement on top of existing search engine



Comparison with related work

e Comparison to other Discovery Challenge submissions
— Eight participants scored over the baseline
— Score of 0.9661 would have achieved third place
— Four SVM approaches; one better then ours
— Ridge regression approach performed better than ours
— Naive Bayes and five other machine learning approaches performed worse



Questions? Comments? Suggestions?




Spam classification
]

e Not every new user has matching users/posts
— Missing metadata or outlier users/posts
— Only 0.7% (44 out of 6343 validation users) had no matches

— Default prediction is ‘clean’
e These missing users were clean in 84% of the cases in the validation set




Data sets
- ®F . S————

BibSonomy | CiteULike
posts 2,102,509 224987
bookmarks, spam 1,766,334
bookmarks, clean 177,546
articles, spam 292 70,168
articles, clean 158,335 154,819
users 38,920 5,200
spam 36,282 1,475
clean 2,638 3,725
average posts/user 54.0 43.3
spam 48.7 47.6
clean 127.3 41.6
tags 352,542 82,121
spam 310,812 43751
clean 64,334 45,401
average tags/post 79 4.6
spam 8.9 7.7
clean 2.7 3.2




Example of a spam post

<DOC>
<DOCNO> 2775810 </DOCNO>
<TITLE>
How To Build Traffic To Your Blog
</TITLE>
<DESCRIPTION>
</DESCRIPTION>
<TAGS>
blogging directory promotion traffic
</TAGS>
<URL>
webpronews ebusiness sitepromotion wpn
3 20041210HowToBuildTrafficToYourBlog
</URL>
</D0OC>




Future work

e Plans for the future
— Implement and test the class-level approach
e QOther possibilities
— Use extra features like PageRank for bookmarks
— Direct comparison on CiteULike data set with algorithms like SVMs
— Evaluate at the post level instead of at the user level

e But: harder to obtain such spam labeling



