Recommending Experts and Scientific Articles	
Toine Bogers Research talk @ RSLIS, Copenhagen June 12, 2008	
	• Tilburg University

Outline

About me

- Expert search & recommendation
- Recommending scientific articles

About me

• Education

 1997-2001 Master's degree in Information Management & Technology
 2002-2004 Master's degree in Computational Linguistics & Artificial Intelligence

Employment

- 2005-now PhD student in the A Propos project about pro-active document recommendation

• Teaching

- 2006-now various guest lectures about search engines and IR
- 2007 Information Search, Retrieval, and Recommendation
 2008 Information Search, Retrieval, and Recommendation

Outline About me Expert search & recommendation Definition & history Tasks & approaches Alook at evaluation & test collections Expertise seeking A university-wide expert search engine Recommending scientific articles

History of expert search

• In 80's and 90's

- Implemented as large-scale databases containing employee skills
- Problems · Puts the workload on employees
 - 'Unnatural' approach
 - · Easily out-of-date
- TREC 2005 Enterprise Track introduced the Expert Search Task
 - Large-scale evaluation effort of expert finding
 - 2005 & 2006: W3C collection • 2007 & 2008: CSIRO collection
 - Huge boost in research into automatic approaches
 - Usually co-occurrence of people and topics is seen as evidence of expertise

Evidence of expertise Tasks and approaches • Content-based evidence Different tasks Steve Brat candidate-steve@w3 - Documents Expert finding – E-mails • Find the experts on a specific topic Rating: Arkiter - Homepages Expert profiling · Find out what one expert knows about • Evidence from social networks different topics Rating: Name: no: - Organizational structure Eric Miller Recommending similar experts - E-mail networks em@w3.org · Find experts who share the same profiles - Bibliographic information Dave Pawson • Activity-based evidence dave.pawson@gmail.com, dave http://www.dpawson.co.uk/ Project time priority, authoring, tool, accessible, checkpoints, autools, guid checkpoint, alerts, webcontent, prompts, markup Search history authoring tool guidelines web content accessibility TOP 20 TOP 20 Publication history ang...

Evaluation

- Majority of work is evaluated using TREC collections
 - W3C collection
 - 5.7 GB and 331,037 documents (Web pages, mailing lists, project pages) Topics are group names
 - Relevance judgments
 - 2005: group members are experts
 2006: TREC participants judge expertise themselves
 - CSIRO collection

 - 4.2 GB and 370,715 documents (similar diversity as W3C) Work tasks created by actual CSIRO science communicators
 - Goal is to create an overview page on a certain topic
 - Relevance judgments done by science communicators in 2007 and 2008

UvT Expert Collection

- Problems with TREC collections
 - Expertise is never self-assessed
 - Only one specific type of organization
- Only in English
- We therefore created the UvT Expert Collection
 - Crawl of a medium-sized Dutch university - Based on Webwijs ("Webwise"), our online expert profiling database
 - 1168 experts
 - 1400 self-assessed expertise topics
 - Bilingual (Dutch and English)
 - Documents include publications, course pages, research descriptions, and homepages

ion on: Google | Cites

- Information about organizational structure and topic hierarchy
- See SIGIR '07 paper for more information

Expertise seeking

- All expert finding work so far has been from an IR perspective - What is missing is an IS perspective: expertise seeking
- What we did to remedy this

 - Focused on the task of recommending similar experts Scenario sketch: "The media wishes to communicate with the top expert, but he
 - is unavailable for a while. Who would you recommend to take their place
 - Got 6 of our university's communication advisors to participate in our study
 - Two-fold purpose of our questionnaire · Investigate expertise seeking behavior

 - Get realistic relevance judgments for the 'similar experts'-task
 Had to judge 10 recommended experts for 10 familiar 'focus' experts
 - See SIGIR '08 workshop paper for more information

Expertise seeking

- · Investigate expertise seeking behavior
 - Inspired by 2007 IP&M paper by Woudstra and Van den Hooff · Identified 11 important factors for source selection (topic of knowledge, familiarity, reliability, availability, perspective, up-to-dateness, approachability, cognitive effort, contacts, physical proximity, saves time)
 - Asked participants to describe
 - Typical requests for expertise
 - · Reasons for picking and not picking specific experts How important each factor was for their decisions
- Some findings
 - Topic of knowledge was most important in recommending someone
 - Familiarity with the expert was also important
 - New factors we identified
 - Organizational structure (professors and project leaders are preferred)
 - Media experience ("one of them is not suitable for talking to the media")

Expertise seeking

- Get realistic relevance judgments
 - Used 44 unique focus experts divided over the 6 PR advisors (10 each) - First, participants were asked for their own suggestions
 - Generated 10 recommended experts for each using system pooling
 - Participants then ranked these suggested experts on a 10-point scale
- Integrated the factors into expert finding models
 - Evaluated using MRR and NDCG@10
- Some findings
 - Best baseline approach combined terms from documents with the
 - self-assessed expertise areas Integrated the following factors into retrieval models: organizational
 - structure, media experience, reliability, up-to-dateness, quality of contacts
 - Significant improvements using reliability, up-to-dateness, and
 - organizational structure

A university-wide expert search engine

- Work in progress by Master's student Ruud Liebregts
- Designing and evaluating a university-wide expert search engine
- Design
 - Data sources include publications, theses, course descriptions, research descriptions, self-assessed expertise areas
 - Allows for filtering on language and faculty
 - Shows collaboration networks for papers and thesis supervision
- Evaluation
 - System-based evaluation
 - 240 test topics
 - 120 Dutch and 120 English
 - 120 based on thesis supervisors and 120 based on paper authors · Gold standard judgments from user-based evaluation (see next slide)

Outline About me Expert search & recommendation Recommending scientific articles What is it? Approaches Social bookmarking Recommending using CiteULike At the library school Future work

Research so far

- There are golden opportunities here!
 - Tons of free, useful data
 - · Large amounts of content described using tags and other metadata
 - Users reveal information about themselves by adding and tagging items
 - Treasure trove of user-item preferences - Can be used to predict new items
- However, research still in its infancy
 - Mostly exploratory and theoretical
 - Some scattered attempts at improving IR using tags
 - Recommendation for social bookmarking
 - Mostly tag recommendation (easy to evaluate)
 - And ofcourse there's StumbleUpon 🕤

Main focus

My main focus

- Recommending interesting bookmarks based on user profiles from social bookmarking websites
- Experiment with different
- Algorithms
 - Contextual representations · Aspects (temporal, growth curves, spam, duplicates)
 - Combinations of approaches (data fusion)
- Evaluation

System-based evaluation

- User-based evaluation
- Preferably for two different areas
- Scientific articles (CiteULike, Bibsonomy)
- Web pages (Delicious)

citeulike 🔳 del.icio.us

BibSonomy

citeulike

Creating a collection

- Daily database dumps available
- Contain user-item-tag triples with timestamps
- · But none of the additional information available on the website - Used the November 2, 2007 dump as a starting point
- Crawled the rest of the website
- Article and user metadata
- Group information
- Reading priorities
- Some statistics
 - 803,521 items (metadata available for 67%)
 - 25,375 users (29% spam profiles)
 - 232,937 tags

Experimental setup & evaluation

- System-based evaluation
 - We know what papers a user liked from his profile How well can we predict what we already know?
 - User profiles we have are user-item pairs Formal setup
 - Take out 10 items from each user profile
 - Train on remaining profile, predict missing items
 - Users with ≥ 20 items and articles added at least twice
 - 10-fold cross-validation to prevent overfitting
 - Evaluation
 - If we recommend the missing items, that's good!
 - MAP, MRR, Precision @ 10, user coverage
 - We can use this same setup for all experiments

At the library school

- First experiments using collaborative filtering
 - Best model has a MAP of 0.2478 and similar P@10
 - User-based filtering performed best
 - Optimal number of neighbors was 5 - User coverage is high at 99.6%
 - For how many users can we predict something?
 - · Some users too new or eclectic
 - Difficult task because of high sparsity (99.98%) MAP of 1.0 not necessarily achievable (or realistic)
 - Performance okay, but room for improvement

At the library school

- What context do we have in CiteULike?
 - (1) Intra-object structures Properties of the documents themselves, such as article metadata and the abstract (available 33% of the time)
 - (2) Inter-object structures Relations between documents, such as those available through authorship information, assigned tags, and inclusion by users.
 - (4-5) Social, systemic, conceptual, and emotional contexts The folksonomy can represent social, conceptual, and emotial context. The information about the groups and the usage patterns are all social context for the recommender.
 - (7) Historical contexts Activity logs allow for, for instance, temporal analysis.

At the library school

- No de-duplication by CiteULike upon entry
- Many duplicates
 - Early estimates of around 10% (on manually annotated testset) Mismatches on title, year, authors, etc.
 - With 20% of those articles having over 20 duplicates

<pre>f 'small world' networks f 'small-world' networks f 'small-world' networks f 'small-world' networks. f `small-world' networks.</pre>
f 'small-world' networks f 'small-world' networks. f 'small-world' networks.
f 'small-world' networks. f 'small-world' networks.
f 'small-world' networks.
f ``small-world'' networks
f `small-world' networks
f `small-world' networks
f `small-world' networks.
f small-world networks
f small-world networks
f small-world networks.
fsmall-worldnetworks.

Future work

- Experiment with different
 - Algorithms
 - Contextual representations
 - Aspects (temporal, growth curves, spam, duplicates)
 - Combinations of approaches (data fusion)
 - Datasets
- User-based evaluation
 - Pick one or two tasks in paper recommendation defined by McNee (2006) Maintain awareness
 - Explore research interestFind more like this
 - Evaluate algorithms using users
 - Based on their actual profile
 - By simulating one of these recommender tasks

