Efficient Context-sensitive Word Completion
for Mobile Devices

Antal van den Bosch
Tilburg Centre for Creative Computing
Tilburg University
P.O. Box 90153, NL-5000 LE Tilburg, The
Netherlands
Antal.vdnBosch@uvt.nl

ABSTRACT

Word completion is a basic technology for reducing the effort in-
volved in text entry on mobile devices and in augmentative com-
munication devices, where efficiency and ease of use are needed,
but where a low memory footprint is also required. Standard so-
lutions compress a lexicon into a suffix tree with a small memory
footprint and high retrieval speed. Keystroke savings, a measurable
correlate of text entry effort gain, typically improve when the al-
gorithm would also take into account the previous word; however,
this comes at the cost of a large footprint. We develop two word
completion algorithms that encode the previous word in the input.
The first algorithm utilizes a character buffer that includes a fixed
number of recent keystrokes, including those belonging to previ-
ous words. The second algorithm includes the complete previous
word as an extra input feature. In simulation studies, the first al-
gorithm yields marked improvements in keystroke savings, but has
a large memory footprint. The second algorithm can be tuned by
frequency thresholding to have a small footprint, and be less than
one order of magnitude slower than the baseline system, while its
keystroke savings improve over the baseline.

Categories and Subject Descriptors

D.2 [Software]: Software Engineering

General Terms

Algorithms, Human Factors, Performance

Keywords

Word completion, predictive text processing, mobile devices, con-
text sensitivity, scaling, ergonomics

1. INTRODUCTION

Word completion is a basic technology for text entry on mobile
devices, as well as an important component in augmentative lan-
guage technology tools [3]. Its main aim is to reduce the number

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Copyright is held by the author/owner(s).
MobileHCI 2008, September 2-5, 2008, Amsterdam, the Netherlands.
ACM 978-1-59593-952-4/08/09.

10

Toine Bogers
Tilourg Centre for Creative Computing
Tilburg University
P.O. Box 90153, NL-5000 LE Tilburg, The

Netherlands
A.M.Bogers@uvt.nl

of keystrokes necessary during text entry by correctly suggesting
the completion of the word currently being entered, as soon as
possible, so that the word does not have to be completely keyed
in. One straightforward strategy is to generate a suggestion at the
word’s unicity point, i.e. the point at which the word is the only
word available in the algorithm’s internal word model (e.g. a list of
words) that fits the string of characters keyed in so far. The word
completion algorithm may also venture to suggest a certain word
even before any of the possible words’ unicity points are reached.
From the moment that the model suggests a correct word comple-
tion (visually displayed in a designated part of the device’s screen),
the user is typically able to click an “Accept” button to accord and
enact the suggestion. Actual savings are made when the suggestion
is accorded before the word’s before-last character is keyed in. Al-
though word completion algorithms are used in many devices with
some success, current word completion systems remain imperfect,
and are vulnerable to at least the following two factors.

The first factor that hampers essentially all word completion sys-
tems is that when a word currently being entered does not occur
in the system’s internal word or language model, the system will
not suggest it, and the user will need to key in the full word. This
problem can only be overcome by including more words in the con-
struction of the algorithm, in the hope of having a better coverage
of new, unseen text.

A second issue that applies to the simpler kind of word comple-
tion systems that are only based on a word list, is that after every
space or punctuation mark, these systems start to guess words anew
without taking into account the previous sequence of characters or
words. Yet, a classic and fundamental insight, quantified in infor-
mation theory [11], is that characters or words preceding the current
word may contribute information that would enable suggesting the
current word earlier than its unicity point, in some cases even im-
mediately. Using information from the previously entered text may
also help in picking one particular suggested word over alternative
words with the same initial characters, but which are less likely
given the previous word.

In this paper, we explore these two problems, provide solutions,
and analyze their relative utility. It is structured as follows. Af-
ter reviewing related work in the area of word completion (or pre-
dictive text processing) algorithms in Section 2, we introduce a
context-insensitive baseline word completion algorithm and two
context-sensitive variants in Section 3. After introducing our train-
ing and testing data and our simulation study in Section 4, we show
the relation between the success of our three algorithms (measur-
able in the percentage of key presses saved) and the size and cov-
erage of their word models, and we compare the three models, in
Section 5. We conclude in Section 6 that by including context,
keystroke savings can indeed be improved at the cost of mem-

465

ory needed; and that a context-sensitive word completion algo-
rithm that takes into account the full previous word (if frequency-
thresholded) as a feature, yields substantial improvements in keystroke
savings, against only a modest increase in memory usage. As a final
note, we discuss valorization aspects of word prediction systems in
general, and our study in particular, in Section 7.

2. RELATED WORK

Word completion systems aim to reduce the effort spent on en-
tering text in a digital device. Generally speaking, there are two
different approaches to reducing the effort of text entry [12]. The
first approach is to find a way of reducing the physical restraints
of entering text by either using alternate modalities or by changing
or augmenting the keyboard layout—such as re-ordering the key
mappings. Examples of such re-orderings have been proposed by
[6] and [13], among others.

The other approach—and the one we focus on in this paper—
aims at reducing the amount of typing necessary to enter a text
by using predictive typing aids such as word completion systems.
Such aids try to predict the completion of the current word as it is
being keyed in, and are available for input modalities ranging from
full keyboards to the more restricted keypads of mobile phones.
For instance, the popular T9 algorithm was designed specifically to
offer predictive text entry on the standard 12-key keypad layout on
the current generation of mobile phones [5]. However, a growing
number of mobile phones, PDAs, and BlackBerrys sport full QW-
ERTY keyboards. We therefore focus on predictive text entry using
the latter type of keyboards in this paper.

Predictive text entry algorithms use context information to antic-
ipate what block of characters (letters, n-grams, syllables, words,
or entire phrases) a person is going to write next [3]. The block
size the typing aid tries to predict, influences the potential savings
in terms of time and keystrokes. Prediction of n-gram sized blocks
has been applied by, for instance, Goodman et al. (2002), who used
n-gram models to correct and predict user input using soft key-
boards, i.e. on-screen keyboards operated using a touch screen or a
stylus [4]. Using language models of at most the 6 previous charac-
ters, they were able to successfully correct user input, when it was
not entirely clear what key the user meant to press. MacKenzie et
al. (2001) also use letter sequence probabilities to disambiguate be-
tween ambiguous user input [9]. They emphasize the necessity of
keeping the memory footprint small while at the same time maxi-
mizing predictive performance.

However, predicting n-grams or syllables can result in increased
cognitive effort for the user who has to check and approve the pre-
dictions. Because words (whitespace-delimited sequences of let-
ters) are more easily recognizable, thereby reducing the cognitive
effort required, words are most widely used as predicted blocks [3].

One of the earliest applications of predictive text entry was the
Reactive Keyboard by Darragh et al. (1990). They adopted a dy-
namic, implicit, and adaptive modeling strategy by using a tree-
based memory structure to store recurring n-grams and quickly
match substrings associated with predictions. Suggestions were
sorted by length and frequency, with the longest, most frequent
substrings being preferred [2].

How et al. (2005) took the previous word into account in the
word completion task by using using a bigram word model to pre-
dict the most likely word in the sequence based on matching char-
acter prefixes of the current word being typed. They report time
savings of 14.1% on average [6]. Tanaka-Ishii (2007) compared
four language models for predictive text entry [13]: two simple
models based on frequency and recency counts, a model based on
co-occurrence between words, and an adaptive n-gram model that

466

takes into account the probability distribution of words previously
used by the user as well. The adaptive n-gram model performed
best. Stocky et al. (2004) took a semantic approach to word predic-
tion instead of a purely statistical one, by looking up common sense
context from the Open Mind Common Sense (OMCS) project for
each completed word [12]. All words from the retrieved contexts
have their frequency scores updated in the text prediction dictio-
nary; based on the first typed characters of the next word, words are
then suggested by frequency. As their training material, they used
a corpus of 5,500 e-mail messages sent over the course of one year
by one user, consisting of 1.1M words. In addition, they used three
smaller Web page corpora containing between 10,500 and 16,500
words.

Some general conclusions can be drawn from the body of related
work. One is that experts tend to benefit more from predictive text
entry for reduced-size keyboards than novices do, but for standard-
sized keyboards this situation is reversed [2]. This is because pre-
dictive typing aids are more likely to be useful in situations with
non-standard keyboards, where people cannot enter characters as
fast as normal. Predictive text entry also tends to yield less benefit
when predicting SMS text than normal text, because the vocabu-
lary is more personalized and because average word length tends
to be smaller, hence the potential savings are also reduced. Finally,
a general problem is that a lack of standardized test corpora makes
comparing the different approaches difficult. The majority of pre-
dictive text approaches tend to be evaluated on different corpora,
usually composed of newspaper text. An additional problem is that
every research effort seems to be evaluated using different metrics
as well: where one approach is evaluated using hit ratio (i.e. the
level of accuracy in predicting the correct word), others are evalu-
ated in terms of keystroke savings or time savings.

3. THREE WORD COMPLETION ALGO-
RITHMS

The two disjoint goals of a fast word completion algorithm are
(i) that it needs to hold a wide-coverage word or language model,
and (ii) it should be able to say at the earliest possible point of a
character sequence being entered, with a success rate that should be
as high as possible, to which word the sequence can be completed.

This task can be phrased as a classification problem in which
an input sequence of entered keys is mapped to the word that is
actually being intended by the person keying the text. Suppose that
a person is keying in the text “it feels nice” on a normal QWERTY
keyboard. First, the word prediction algorithm needs to suggest
“it” during the first two keystrokes. Then, after being reset by the
space bar, it needs to suggest “feels” throughout the sequence of
that word being keyed in, etcetera. Its classification task thus can
be made explicit as thirteen classification instances depicted at the
left-hand side of Figure 1.

To train a classifier, either a lexicon or a text could be encoded
with the scheme as illustrated in Figure 1, resulting in as many
labeled instances as characters in the lexicon or text. The classifier,
then, has to fulfill the need of preserving all the words in the lexicon
or training text, and being able to generate, given new input of key
sequences, predictions of the correct words as soon as possible as
the word is being keyed in.

To this purpose, the general structure of tries are well suited [8].
In our study, we employ the IGTree algorithm [1], which imple-
ments trie compression and classification. In the first compression
phase, a list of words (either from a lexicon or a text) is compressed
by IGTree into a trie structure. To do this, first a one-time order-
ing of features is computed, where the features are the positions

10

character buffer prediction character buffer prediction character buffer previous word prediction
i it i it i - it
it it it it it - it
_ space ijt]_ space _ space
f feels it _|f feels f it feels
fle feels ijt| _[fle feels fle it feels
flele feels t|_|flele feels flele it feels
flele|l feels it flele|l feels ele|l it feels
flele|l]s feels ilt| |fle|e|l]s feels f e|ll]s it feels
. space t| |flele|l]s]| space . - space
n nice _|flelell|s]|_|n nice n| feels nice
nli nice flele[l[s| [n]i nice nili feels nice
nlijc nice ele|l|s| |n]i]c nice nlijc| feels nice
njijcle nice ell|s| |n|i|c]|e nice njijcle| feels nice

Figure 1: Example classification instances derived from the sentence “it feels nice” for the context-insensitive algorithm (left), the
character context algorithm (middle), and the previous-word context algorithm (right).

in the character buffer. The ordering of the features is determined
by their information gain ratio with respect to predicting the word
[10]. Given any reasonable amount of examples, the rightmost fea-
ture, i.e. the most recently pressed key, has the overall highest pre-
dictive power, hence the largest gain ratio. The overall ordering is
from right to left. Subsequently, a root node is created, which rep-
resents the most likely word when no key is pressed yet. This root
node fans out to a first layer of nodes through arcs, where the arcs
represent all possible keystrokes. Each first-layer node represents
the most likely word given a single keystroke, and branches out
to second-layer nodes, connected by arcs that denote all possible
keystrokes given the first keystroke. A node becomes an end node
if the arc leading to that node uniquely identifies a single word,
even if the arc is not the last character of the word. This algorithm
is recursively applied until a compressed trie is produced, ready to
process new instances.

The trie classifies new incoming instances (where the keystrokes
are known, but the word needs to be predicted) by traversing the
tree with the current character buffer (cf. Figure 1) as input fea-
tures. Starting with the root node, it deterministically takes the
arc representing the rightmost character, and continues following
matching arcs in the ordering of the features until either (i) it en-
counters an end node, at which point the predicted word is emitted
as output, or (ii) it encounters a non-ending node from which it
finds no more matching arcs connecting to nodes further down the
tree, at which point it emits the most likely word so far.

In the larger context of the text application, this trie is embedded
in a real-time wrapper that reads each incoming keystroke, updates
the character buffer (shifting it leftward with each keystroke, eras-
ing it after each space), sends the buffer to the trie, catches the
prediction emitted by the trie, and presents this to the user, who can
then press a special “Accept” key to accept the trie’s suggestion.

To include context of previously entered text, two basic options
are available and tested in this paper. The first, illustrated in the
middle of Figure 1, is to not reset the character buffer after the
spacebar or a punctuation key is hit, but rather to keep the character
buffer filled with a fixed number of recently pressed keys — thus
including the previous word, or at least a part of it, or sometimes
even a part of the before-last word.

The second variant is to include the full previous word (or words)
keyed in before the last space. The right-hand part of Figure 1
displays the setup explored in this paper, where a simple charac-
ter buffer that is reset after each space, is accompanied by a sin-
gle feature carrying the word previous to the word currently being

10

predicted. In the trie, this “previous word” feature is mixed with
the other letter features, making the trie somewhat more compli-
cated in shape. An unrestricted word feature can have hundreds
of thousands of unique values (i.e. all unique words occurring
in the million-word corpora used for training), hence a trie that
would split such a node would be shattered over a Zipfian distri-
bution of nodes, including a long tail of hapax values (words oc-
curring once, typically about half of all the unique words in the
training corpus) offering no generalization power, and likely pro-
ducing incorrect next-word suggestions [14]. As suggested by Van
den Bosch (2005), a word-valued feature can be made more effi-
cient when integrated in a trie structure when only the most fre-
quent values of the feature, e.g. the top n most frequent words,
are kept as discrete values, and all other values are lumped together
under a dummy value. In empirical tests we set n = 200, produc-
ing the best performance on a held-out test set. Our word-valued
feature thus causes a 201-fold branching in the trie at the level it is
invoked.

4. EXPERIMENTAL SETUP

We run simulation studies on a large amount of controlled data,
split into training and testing material. These simulation studies
emulate human typing behavior in a deterministic way, i.e., they
emulate a fixed strategy in typing in which correct word comple-
tion suggestions are accepted at the earliest possible point. Running
such an artificial simulation study abstracts away from human error
and deviating strategies (such as ignoring correct suggestions occa-
sionally), allowing experiments with very large amounts of data,
but disallowing the measurement of real processing times, mea-
surements of energy spent, or brain activity measurements. Essen-
tially, we assume that keystroke savings are a sensible correlate of
human effort savings.

Our experiments are based on Dutch data, with the purpose of
posing a slightly larger challenge than English. Like English and
German, Dutch is a germanic language. Like German, Dutch has
a productive compounding morphology, allowing for long admis-
sible words. This phenomenon puts a pressure on the unknown
words problem, as long compounds tend to be rare, and compared
to English, take away frequency counts from the words they are
composed of.

As a text corpus for training and testing, we used the first four
months of a Dutch local newspaper’s full article archive, split into a
training corpus of up to ten million words, and a disjoint test set of
100,000 words. The corpus thus consists of journalistic text, cover-

467

ing local, national, and international topics of all sorts. In addition,
we include one alternative test set representing more colloquial and
social language, viz. a collection of transcribed face-to-face dia-
logues from the Spoken Dutch Corpus'. This subcorpus is cate-
gorized as the most spontaneous register in the corpus, and con-
tains a total of 2,444,755 words after basic cleanup (we removed
transcribed disfluencies, and converted filled pauses to commas, to
better resemble orthographic text).

Note that with both sets we are using running text as training
data, and not a lexicon. Obviously we need the text to be able
to generate the left-hand contextual features in the two context-
sensitive word completion system variants. At the same time, this
approach does mean for the context-insensitive variant that it is
trained on all unique words occurring in the corpus, and nothing
else, e.g. no external balanced or encyclopedic list of Dutch words,
which could be a welcome boost in principle. In order to allow for
a proper comparison between the three systems, we train and test
all three on the exact same material.

4.1 Experimental design and evaluation

Keeping the test sets constant, we vary the amount of training
material in a pseudo-exponential series, starting at 10,000 words,
ending at 10,000,000. At each step in the curve, we perform a full
IGTree experiment in which we generate a trie, and process the test
sets with the trie. At each simulation experiment, we measure the
following for evaluation purposes:

1. The number of nodes in the trie;

2. The number of characters processed per second by the IGTree
classification algorithm;

3. The percentage of keystrokes saved.

The latter percentage of keystrokes saved is the proportion of
the total number of keystrokes needed to generate the entire test
text, following all correct suggestions of the system as soon as
possible, against the total number of keystrokes needed when the
full test text would be typed in character by character. In princi-
ple, keystrokes can be saved if the word is correctly suggested be-
fore the before-last character is pressed. The amount of keystrokes
saved will therefore be 0.0% or higher; at 0.0%, the word comple-
tion system is completely ineffective.

5. RESULTS

Figure 2 displays the learning curve results of our three vari-
ants, measured on the 100,000-words test set drawn from the same
source as the training material. The x-axis, representing the number
of words in the training corpus, follows a logarithmic scale, while
the y-axis represents the percentage of keystrokes saved against the
default situation of typing in all words character by character. First,
we observe that all three lines exhibit an upward trend; trained on
more data, they lead to better keystroke savings. A second obser-
vation is that the context-sensitive variants, both the one based on
a fixed-length buffer with previous character context (the dashed
line) and the one based on the previous word context (the dotted
line), appear to be exhibiting a log-linear growth; with every dou-
bling of the training data, they yield a constant improvement in
keystroke savings. In contrast, the curve representing the context-
insensitive baseline system appears to taper off, falling increasingly
behind the the context-sensitive variants.

"http://lands.let.kun.nl/cgn/ehome.htm

468

% keypresses saved

NO CONtext mmm—
Character context
) Top 200 word context *

0 L
10000 100000 1e+06 1e+07

training words

Figure 2: Learning curves of the three word completion vari-
ants, in terms of the percentage of characters saved, measured
on processing the 100,000-word test text.

At the maximal training set size of 10 million words, the baseline
system saves 14.5% keystrokes. In contrast, the system using pre-
vious character context saves 22.4% (a relative increase of 54%),
and the system using the previous word as context saves 19.6% (a
relative increase of 35%).

However, context sensitivity comes at the cost of a larger mem-
ory footprint. Using the same logarithmic x-axis as Figure 2, Fig-
ure 3 displays the number of tree nodes needed at the various train-
ing set sizes by the three systems. The y-axis is also logarithmic.
In this log-log space, the numbers of tree nodes needed by both
two character-buffer-based systems, the context-insensitive base-
line, and the system using the previous character context have a
linear relation with the number of training instances. At the largest
training set size the context-insensitive baseline system uses about
15 times less memory than the system using the character context:
1.7 million nodes vs. 26.2 million nodes. Slightly in contrast, the
amount of nodes needed by the system using the previous word
as context tapers off with more training data, ending up at about
double the amount of nodes, 3.4 million, compared to the baseline
system at the same 10 million training words. The memory foot-
print curve of this system even displays a mild decrease, caused by
the fact that the word-valued feature in the trie ends up in a lower
place in the gain ratio feature ranking when more training data is
available—i.e. with more training data the feature is tested deeper
in the tree, causing relatively less fragmentation higher up in the
tree.

Besides memory footprint, we would like to ensure that our vari-
ants are not exceptionally slower than the baseline, as the algorithm
has to be fast enough to follow real time keystrokes, the average
speed of which has been estimated at 0.12 seconds per keystroke
for a good typist, and 0.28 seconds for a bad typist [7]. Figure 4
displays the speed of the three systems using the same logarith-
mic learning curve axis, measured over the full 100,000 word test
set in uninterrupted classification mode, on a state-of-the-art multi-
core computing server. The figure shows that the speed of the three
systems, despite their widely differing memory footprints, is quite
similar, and sufficiently high. The speed of all three systems de-
clines from about 65 thousand characters (keystrokes) per second

10

T
NO context s
Character context ==sssss o
Top 200 word context s R
o
o

1e+07 | o E

1e+06

tree nodes

100000

10000 100000 1e+06 1e+07

training words

Figure 3: Memory usage of the three word completion variants,
in terms of the number of trie nodes.

to around 40 thousand characters per second for the two context-
sensitive systems, and around 50 thousand characters per second
for the context-insensitive baseline system at 10 million words of
training data. Even if the processing unit of the mobile device is
two orders of magnitude slower than the AMD Opteron chipset of
our computing server, it would be fast enough to generate new sug-
gestions immediately after each new keystroke.

100000

NO context
Character context ==s==ss
Top 200 word context sssssse

80000 [1

60000

40000

characters per second

20000 [1

0 L L
10000 100000 1e+06 1e+07

training words

Figure 4: Speed of the three word completion variants, in terms
of the number of characters processed per second.

The results displayed in Figures 2, 3, and 4 are obtained with the
100,000-word test set disjoint from, but from the same origin and
register as the training set of newspaper texts. As argued earlier,
an external test set of a different register would pose a potentially
difficult challenge to the word completion algorithm, just as genre,
domain and register differences do in language modeling [14]. Ta-
ble 1 lists the keystroke savings attained on the external test set
of transcribed spontaneous Dutch face-to-face dialogues, in con-

10

Table 1: Difference in keystroke savings on the in-domain
100,000-word test set, vs. the out-of-domain spontaneous dia-
logue test set at the maximal training set size by the three sys-
tems.

% Keystrokes saved
System In-register test | Out-of-register test
Baseline 14.5 53
Character context 22.4 9.8
Word context 19.5 8.4

trast with the savings on the in-register test set, by the three sys-
tems. It is quite apparent from the two columns in Table 1 that the
keystroke savings on the test set from the different register are dra-
matically lower, under 10%. At the same time, the relative gains by
the context-sensitive methods follow the same pattern as observed
before, and even slightly better in terms of relative improvement.

6. DISCUSSION

In this paper we explored two variants of a baseline word com-
pletion system, that make use of previous-word context in two dif-
ferent ways. We ran simulation experiments, measuring keystroke
savings, under the assumption that these savings are a correlate of
human effort saved when the word completion algorithm would be
incorporated in text entry software. One variant includes the pre-
vious character context up to a fixed number of characters, while
the other variant included a frequency-thresholded representation
of the previous word that was keyed in before the current one. Ar-
guably, the variant encoding the full previous word captures the
linguistic intuition that the identity of the previous word holds the
relevant information, in contrast to the previous characters. On the
other hand, the previous characters do encode the identity of the
previous word or words implicitly. Also, they hold partial letter-
by-letter information on the end of the previous word, capturing
morphological information on suffixes and inflections, which may
carry predictive information as well.

With more data, all systems perform better, but while the base-
line system’s performance gain tapers off, the gains of the context-
sensitive systems improve over the baseline, and appear to increase
at a log-linear pace. At 10 million words of training data, the best
keystroke savings percentage of 22.4% is attained by the system us-
ing the previous character context, a relative improvement of 54%
over the baseline savings percentage of 14.5%.

Unfortunately, this optimal savings percentage comes with the
largest memory footprint. Given that a straightforward (uneco-
nomical) implementation of the trie costs 20 bytes per node, the
best-performing system would require 524 Mb of working memory,
which is an infeasible amount of memory on most current mobile
devices. The variant that uses the frequency-thresholded previous
word as contextual information uses substantially less memory and
only about double the amount of memory that the baseline system
uses. The frequency thresholding, tuned by selecting an optimal
top-n words on a held-out test set, resulted in n being set to 200,
which is similar to the the typical number of function words in ger-
manic languages (the top 200 most frequent Dutch words include
most of the closed-class function word categories such as determin-
ers, conjunctives, pronouns, and to a lesser degree prepositions, and
contain relatively few open-class words).

As an additional analysis, we compared the efficiency of our
three systems on a test set that contains widely different type of
text than the training set. While the training set contains newspa-
per text, the external out-of-register test set contained a large set of

469

transcribed spontaneous face-to-face conversations about mundane
topics and containing a lot of social discourse and chit-chat. Im-
portantly, we reported a dramatic drop in the keystroke savings on
this type of text, to under 10%. At the same time, we noted consid-
erably better savings by the context-sensitive methods as compared
to the baseline system.

In future work, one obvious extension to the current matrix of
experiments is to mix the roles of training and test sets systemati-
cally (so that the transcribed dialogue corpus is also training set in
one set of experiments), and also to generate a combined training
set of the two registers. Other more extreme test sets may be con-
sidered, in which abbreviations are used typical of mobile phone
and chat text entry, such as “w8” for “wait”, or where the use of
language is sloppy and full of spelling and grammar errors. Both
short words and errors pose a challenge to word completion algo-
rithms, as few savings can be made with short words, and errors
constitute unknown tokens.

Other avenues of future research include robustness to multi-
lingual data, which can be seen as an extreme form of different
registers; in reality, it is quite likely that many users will actu-
ally generate different texts in different registers and languages on
the same device. Also, personalization and incremental training
and adaptation to individual users should be integrated in the cur-
rent approach, as well as adaptability to keyboards with less keys
than the language has characters (such as mobile phone keypads, or
QWERTY-keyboards for certain Asian languages).

7. VALORIZATION

Word completion subsystems are frequently included in commu-
nication aids in order to increase the user’s rate of communication.
Aids for predictive text entry have several important applications,
with improved access for people with disabilities being among the
most important ones. People with severe motor and oral disabili-
ties such as cerebral palsy or hemiplegia can greatly benefit from
tools that enable them to increase their communication speed [3].
For many years, predictive text entry techniques have also found
application in languages with large-volume character sets such as
Chinese or Japanese, where the standard keyboard does not have
enough keys to accommodate all the characters present in the lan-
guage. Here, typing aids can enable the projection of a wide range
of characters with a limited number of keys; in fact, this is currently
the major method of solving this problem [13].

Other popular applications of predictive text entry are input situ-
ations with a reduced number of keys, such as mobile phones, and
situations without direct tactile feedback, such as stylus-operated
touch screens. Most current mobile phones are equipped with some
version of a word completion algorithm; the T9 algorithm [5], for
instance, is claimed to be shipped with 2.5 billion devices?, on the
basis of which the owners could claim to have the most widely dis-
tributed piece of language technology in the world.

Our particular contribution to the current state of the art in word
completion technology is that we formulate recommendations on
how the efficiency of this technology can be improved, at fairly lim-
ited costs (a mildly higher memory footprint). Our learning curve
experiments offer a tool to chart the trade-off between having more
training material and more context sensitivity (causing higher text
entry efficiency) and needing more memory. As memory limita-
tions of mobile devices are gradually and steadily being reduced,
our recommendations could be used by mobile device developers
to support the decision to move from a relatively limited word com-

http://www.nuance.com/news/pressreleases/
2007/20070824_tegic.asp

470

pletion system to a less constrained context-sensitive system, offer-
ing customers a noticeably better service.

Acknowledgments

The research reported in this paper has been funded by the Dutch
Ministry of Economic Affairs, under its Innovation Programme on
Man-Machine Interaction, IOP MMI. The authors wish to thank
Menno van Zaanen, Herman Stehouwer, Peter Berck, other mem-
bers of the ILK (Tilburg) and ILPS (Amsterdam) research groups,
and Frank Hofstede for comments and suggestions.

8. REFERENCES

[1] W. Daelemans, A. Van den Bosch, and A. Weijters. IGTree:
Using Trees for Compression and Classification in Lazy
Learning Algorithms. Artificial Intelligence Review,
11:407-423, 1997.

[2] J.J. Darragh, I. H. Witten, and M. L. James. The Reactive
Keyboard: A Predictive Typing Aid. Computer,
23(11):41-49, 1990.

[3] N. Garay-Vitoria and J. Abascal. Text Prediction Systems: A
Survey. Universal Access in the Information Society,
4(3):188-203, 2006.

[4] J. Goodman, G. Venolia, K. Steury, and C. Parker. Language
Modeling for Soft Keyboards. In Proceedings of IUI 02,
pages 194-195, New York, NY, USA, 2002. ACM.

[5] D. L. Grover, M. T. King, and C. A. Kushler. Reduced

Keyboard Disambiguating Computer. Patent No.

US5818437, Tegic Communications, Inc., Seattle, WA,

October 1998.

Y. How and M.-Y. Kan. Optimizing Predictive Text Entry for

Short Message Service on Mobile Phones. In M. J. Smith

and G. Salvendy, editors, Proceedings of HCII *05, Las

Vegas, NV, July 2005. Lawrence Erlbaum Associates.

[7] D. Kieras and B. John. The GOMS Family of Analysis

Techniques: Tools for Design and Evaluation. Technical

Report CMU-HCII-94-106, Carnegie Mellon University,

1994.

D. E. Knuth. The Art of Computer Programming, volume 3:

Sorting and Searching. Addison-Wesley, Reading, MA,

1973.

[9] L. S. MacKenzie, H. Kober, D. Smith, T. Jones, and
E. Skepner. LetterWise: Prefix-Based Disambiguation For
Mobile Text Input. In Proceedings of UIST ’01, pages
111-120, New York, NY, USA, 2001. ACM.

[10] J. Quinlan. c4.5: Programs for Machine Learning. Morgan
Kaufmann, San Mateo, CA, 1993.

[11] C. Shannon. A Mathematical Theory of Communication.
Bell Systems Technical Journal, 27:379-423 and 623656,
1948.

[12] T. Stocky, A. Faaborg, and H. Lieberman. A Commonsense
Approach to Predictive Text Entry. In CHI "04: CHI *04
Extended Abstracts on Human Factors in Computing
Systems, pages 1163—-1166, New York, NY, USA, 2004.
ACM.

[13] K. Tanaka-Ishii. Word-based Predictive Text Entry using
Adaptive Language Models. Natural Language Engineering,
13(1):51-74, 2007.

[14] A. Van den Bosch. Scalable Classification-based Word
Prediction and Confusible Correction. Traitement
Automatique des Langues, 46(2):39-63, 2006.

[6

—_

[8

—_—

10

