
Dependency Parsing by Inference over High-recall Dependency Predictions

Sander Canisius, Toine Bogers,
Antal van den Bosch, Jeroen Geertzen
ILK / Computational Linguistics and AI

Tilburg University, P.O. Box 90153,
NL-5000 LE Tilburg, The Netherlands
{S.V.M.Canisius,A.M.Bogers,

Antal.vdnBosch,J.Geertzen }@uvt.nl

Erik Tjong Kim Sang
Informatics Institute

University of Amsterdam, Kruislaan 403
NL-1098 SJ Amsterdam, The Netherlands

erikt@science.uva.nl

1 Introduction

As more and more treebanks, i.e. syntactically-
annotated corpora, become available for a wide va-
riety of languages, machine learning approaches
to parsing gain interest as a means of developing
parsers without having to repeat such labor-intensive
and language-specific activities as grammar devel-
opment for each new language. In this paper, we
describe two different machine learning approaches
to the CoNLL-X shared task on multi-lingual depen-
dency parsing. First, we introduce a number of base-
lines that generate left-branching, right-branching or
more complex trees. Next, we present two systems
that were submitted to the shared task: 1) an ap-
proach that directly predicts all dependency relations
in a single run over the input sentence, and 2) a cas-
cade of phrase recognizers. We find that the first ap-
proach performs best and conclude with a detailed
error analysis of its output for two of the thirteen
languages in the task, Dutch and Spanish.

2 Baseline approaches

We developed four different baseline approaches
for assigning labeled dependency structures to sen-
tences. All of the baselines produce projective struc-
tures. We describe the heuristics for constructing the
trees and labeling the nodes separately. The follow-
ing four baseline structures were constructed:

Binary right-branching trees The first baseline
produces right-branching binary trees. The first to-
ken in the sentence is marked as the top node with
HEAD 0 and DEPRELROOT. For the rest of the
tree, tokenn − 1 serves as the HEAD of tokenn.

Figure 1 shows an example of the kind of tree this
baseline produces.

Binary left-branching trees The binary left-
branching baseline mirrors the previous baseline.
The penultimate token in the sentence is marked as
the top node with HEAD0 and DEPRELROOT
since punctuation tokens can never serve asROOT.
For the rest of the tree, the HEAD of tokenn is token
n+1. Figure 2 shows an example of a tree produced
by this baseline.

Inward-branching trees In this approach, the
first identified verb1 is marked as theROOTnode.
The part of the sentence to the left of theROOTis
left-branching, the part to the right of theROOTis
right-branching. Figure 3 shows an example of a
tree produced by this third baseline.

Nearest neighbor-branching trees In our most
complex baseline, the first verb is is marked as the
ROOTnode and the other verbs (with DEPRELvc )
point to the closest preceding verb. The other to-
kens point in the direction of their nearest neighbor-
ing verb, i.e. the two tokens at a distance of 1 from
a verb have that verb as their HEAD, the two tokens
at a distance of 2 have the tokens at a distance of 1
as their head, and so on until another verb is a closer
neighbor. Figure 4 clarifies this kind of dependency
structure in an example tree.

Labeling is done using a three-fold back-off strat-
egy. From the training set, we collect the most
frequent DEPREL tag for each head-dependency

1We consider a token a verb if its CPOSTAG tag starts with
a ‘V’.



verb verb punct

ROOT

Figure 1: Binary right-branching tree for an example
sentence with two verbs.

verb verb punct

ROOT

Figure 2: Binary left-branching tree for the example
sentence.

FORM pair, the most frequent DEPREL tag for each
FORM, and the most frequent DEPREL tag in the
entire training set. The unlabeled tokens are labeled
in this order: first, we look up if FORM pair of a
token and its head was present in the training data.
If not, then we assign it the most frequent DEPREL
tag in the training data for that specific token FORM.
If all else fails we label the token with the most fre-
quent DEPREL tag in the entire training set (exclud-
ing punct andROOT).

language baseline unlabeled labeled
Arabic left 58.82 39.72
Bulgarian inward 41.29 29.50
Chinese NN 37.18 25.35
Czech NN 34.70 22.28
Danish inward 50.22 36.83
Dutch NN 34.07 26.87
German NN 33.71 26.42
Japanese right 67.18 64.22
Portuguese right 25.67 22.32
Slovene right 24.12 19.42
Spanish inward 32.98 27.47
Swedish NN 34.30 21.47
Turkish right 49.03 31.85

Table 1: The labeled and unlabeled scores for the
best performing baseline for each language (NN =
nearest neighbor-branching).

The best baseline performance (labeled and un-
labeled scores) for each language is listed in Table
1. There was no single baseline that outperformed

verb verb punct

ROOT

Figure 3: Binary inward-branching tree for the ex-
ample sentence.

ROOT

verb verb punct

Figure 4: Nearest neighbor-branching tree for the
example sentence.

the others on all languages. The nearest neighbor
baseline outperformed the other baselines on five
of the thirteen languages. The right-branching and
inward-branching baselines were optimal on four
and three languages respectively. The only language
where the left-branching trees provide the best per-
formance is Arabic, due to the fact that Arabic sen-
tences are written and read from right to left.

3 Parsing by inference over high-recall
dependency predictions

In our approach to dependency parsing, a machine
learning classifier is trained to predict (directed) de-
pendency relations between a head and a dependent.
For each token in a sentence, instances are generated
where this token is a potential dependent of each of
the other tokens in the sentence2. The label that is
predicted for each classification case serves two dif-
ferent purposes at once: 1) it signals whether the
token is a dependent of the designated head token,
and 2) if the instance does in fact correspond to a
dependency relation in the resulting parse of the in-
put sentence, it specifies the type of this relation, as
well.

By considering each potential dependency rela-
tion as a separate classification case, inconsistent
trees may result, however. For example, one token

2To prevent explosion of the number of classification cases
to be considered for a sentence, we restrict the maximum dis-
tance between a token and its potential head. For each language,
we selected this distance so that, on the training data, 95% of the
dependency relations is covered.



may be predicted to be a dependent of more than one
head. In order to recover a valid dependency tree
from the separate pair-wise dependency predictions,
a simple inference procedure is performed. Consider
an input sentence consisting ofn tokens and one of
these tokens for which the dependency relation is to
be predicted. For this token, a number of classifi-
cation cases have been processed, each of them in-
dicating whether and if so how the token is related
to one of the other tokens in the sentence. Some of
these predictions may be negative, i.e. the token is
not a dependent of a certain other token in the sen-
tence, others may be positive, suggesting the token
is a dependent of some other token. If all classi-
fications are negative, the token is assumed to have
no head, and consequently no dependency relation is
added to the tree. If one of the classifications is non-
negative, suggesting a dependency relation between
this token as a dependent and some other token as a
head, this dependency relation is added to the tree.
Finally, there is the case in which more than one pre-
diction is non-negative. By definition, at most one of
these predictions can be correct; therefore, only one
dependency relation should be added to the tree. To
select the most-likely candidate from the predicted
dependency relations, the candidates are ranked ac-
cording to the classifier confidence of the base clas-
sifier that predicted them, and the highest-ranked
candidate is selected for insertion into the tree.

We implement our base classifier using a
memory-based learner as implemented by TiMBL
(Daelemans et al., 2004). The instances processed
by this classifier correspond to a rather simple de-
scription of the head-dependent pair to be classified.
For both the potential head and dependent, there are
features encoding a 2-1-2 window of words and part-
of-speech tags; in addition, there are two spatial fea-
tures: a relative position feature, encoding whether
the dependent is located to the left or to the right
of its potential head, and a distance feature that sim-
ply lists the number of tokens between the dependent
and its head. The parameters of the memory-based
learner have been optimized for accuracy separately
for each language by internally sampling training
and test data from the training set.

The base classifier in our parser is faced with a
classification task with a highly skewed class dis-
tribution, i.e. instances that correspond to a depen-

dency relation, are largely outnumbered by those
that do not. In practice, such a huge number of neg-
ative instances usually results in classifiers that tend
to predict fairly conservatively, resulting in high pre-
cision, but low recall. In the approach introduced
above, however, it is better to have high recall, even
at the cost of precision, than to have high precision at
the cost of recall. A missed relation by the base clas-
sifier can never be recovered by the inference proce-
dure; however, due the constraint that each token can
only be a dependent of one head, excessive predic-
tion of dependency relations can still be corrected
by the inference procedure. An effective method for
increasing the recall of a classifier is down-sampling
of the training data. In down-sampling, instances
belonging to the majority class (in this case the neg-
ative class) are removed from the training data, so
as to obtain a more balanced distribution of negative
and non-negative instances.

Figure 5 shows the effect of systematically re-
moving an increasingly larger part of the negative in-
stances from the training data. First of all, the figure
confirms that down-sampling helps to improve re-
call, though it does so at the cost of precision. More
importantly however, it also illustrates that this im-
proved recall is beneficial for the performance of the
dependency parser. The shape of the performance
curve of the dependency parser closely follows that
of the recall. Remarkably, parsing performance con-
tinues to improve with increasingly stronger down-
sampling, even though precision drops considerably
as a result of this. This shows that the confidence of
the classifier for a certain prediction is a reliable in-
dication of the quality of that prediction. Only when
the number of negative training instances is reduced
to equal the number of positive instances, the per-
formance of the parser is negatively affected. Based
on a quick evaluation of various down-sampling ra-
tios on a 90%-10% train-test split of the Dutch train-
ing data, we decided to down-sample the training
data for all languages with a ratio of two negative
instances for each positive one.

Table 2 lists the unlabeled and labeled attachment
scores of the resulting system for all thirteen lan-
guages.



 0

 20

 40

 60

 80

 100

 2 4 6 8 10

Sampling ratio

Precision
Recall

System LAS

Figure 5: The effect of down-sampling on precision
and recall of the base classifier, and on labeled ac-
curacy of the dependency parser. The x-axis refers
to the number of negative instances for each posi-
tive instance in the training data. Training and test-
ing was performed on a 90%-10% split of the Dutch
training data.

4 Cascaded dependency parsing

One of the alternative strategies explored by us was
modeling the parsing process as a cascade pair of
basic learners. In the first phase, each learner had
to predict whether each word was a daughter of the
preceding or the next word. Dependent words were
removed and the remaining words were sent to the
learners for further rounds of processing until all
words but one had been assigned a parent. When-
ever crossing links prevented further assignments of
parents to words, the learner was expected to ig-
nore the remaining word requiring the longest de-
pendency link. When the first phase was finished
another learner assigned labels to pairs of words
present in dependency links.

This approach was based on our earlier work
(Tjong Kim Sang, 2002). Because of time con-
straints we were unable to evaluate different learner
configurations. We used two different training files
for the first phase: one for predicting the dependency
links between adjacent words and one for predicting
all other links. As learner, we used TiMBL with its
default parameters. We evaluated different feature
sets and ended up with using words, lemmas, POS
tags and an extra pair of features with the POS tags
of the recent attachments to the focus word. With

language unlabeled labeled
Arabic 74.59 57.64
Bulgarian 82.51 78.74
Chinese 82.86 78.37
Czech 72.88 60.92
Danish 82.93 77.90
Dutch 77.79 74.59
German 80.01 77.56
Japanese 89.67 87.41
Portuguese 85.61 77.42
Slovene 74.02 59.19
Spanish 71.33 68.32
Swedish 85.08 79.15
Turkish 64.19 51.07

Table 2: Results of the submitted system.

this configuration, this approach achieved a labeled
score of 62.99 on our Dutch test data compared to
74.59 of the constraint satisfaction approach.

5 Error analysis

We examined the system output for two languages
in more detail: Dutch and Spanish.

5.1 Dutch

With a labeled attachment score of 74.59 and an
unlabeled attachment score of 77.79, our submitted
Dutch system performs somewhat above the average
over all submitted systems (labeled 70.73, unlabeled
75.07). We review the most notable errors made by
our system.

From a part-of-speech (CPOSTAG) perspective,
a remarkable relative amount of head and depen-
dency errors are made onconjunctions. A likely
explanation is that the tag “Conj” applies to both co-
ordinating and subordinating conjunctions. A fine-
grained part-of-speech tag would likely solve some
of these errors.

Left- and right-directed attachment to heads is
roughly equally successful. Many errors are made
on relations attaching to ROOT; the system appears
to be overgenerating attachments to ROOT, mostly
in cases when it should have generated rightward
attachments. Unsurprisingly, the more distant the
head is, the less accurate the attachment; especially
recall suffers at distances of three and more tokens.



The most frequent attachment error is generat-
ing a ROOT attachment instead of a “mod” (mod-
ifier) relation, often occurring at the start of a sen-
tence. Many errors relate to ambiguous adverbs such
as bovendien(moreover),tenslotte(after all), and
zo (thus), which tend to occur rather frequently at
the beginning of sentences in the test set, but less
so in the training set. The test set appears to con-
sist largely of formal journalistic texts which typi-
cally tend to use these marked rhetorical words in
sentence-initial position, while the training set is a
more mixed set of texts from different genres and
individual sentences.

5.2 Spanish

The Spanish test data set was the only data set in
which the alternative cascaded approach (72.15) out-
performed our main constraint satisfaction approach
(68.32). A detailed comparison of the output files
of the two system has not revealed a unique cause
for the performance difference. We have exam-
ined a possible sentence length influence, scores ob-
tained for different POS tags and scores related to
links spanning a different number of words. As ex-
pected the cascaded approach, without a link length
limit, outperforms the constraint satisfaction ap-
proach, with a 15-word span maximum, when pre-
dicting links of longer lengths. But the first method
also outperformed the second for shorter spans.

Acknowledgements

This research is funded by NWO, the Netherlands
Organization for Scientific Research under the IMIX
programme, and the Dutch Ministry for Economic
Affairs’ IOP-MMI programme.

References

A. Abeillé, editor. 2003.Treebanks: Building and Us-
ing Parsed Corpora, volume 20 ofText, Speech and
Language Technology. Kluwer Academic Publishers,
Dordrecht.

S. Afonso, E. Bick, R. Haber, and D. Santos. 2002. “Flo-
resta sint́a(c)tica”: a treebank for Portuguese. InProc.
of the Third Intern. Conf. on Language Resources and
Evaluation (LREC), pages 1698–1703.

N. B. Atalay, K. Oflazer, and B. Say. 2003. The annota-
tion process in the Turkish treebank. InProc. of the 4th
Intern. Workshop on Linguistically Interpreteted Cor-
pora (LINC).

A. Böhmov́a, J. Hajǐc, E. Hajǐcová, and B. Hladḱa. 2003.
The PDT: a 3-level annotation scenario. In Abeillé
(Abeillé, 2003), chapter 7.

S. Brants, S. Dipper, S. Hansen, W. Lezius, and G. Smith.
2002. The TIGER treebank. InProc. of the
First Workshop on Treebanks and Linguistic Theories
(TLT).

K. Chen, C. Luo, M. Chang, F. Chen, C. Chen, C. Huang,
and Z. Gao. 2003. Sinica treebank: Design criteria,
representational issues and implementation. In Abeillé
(Abeillé, 2003), chapter 13, pages 231–248.

M. Civit Torruella and Ma A. Mart́ı Antońın. 2002. De-
sign principles for a Spanish treebank. InProc. of the
First Workshop on Treebanks and Linguistic Theories
(TLT).

W. Daelemans, J. Zavrel, K. Van der Sloot, and A. Van
den Bosch. 2004. TiMBL: Tilburg memory based
learner, version 5.1, reference guide. Technical Report
ILK 04-02, ILK Research Group, Tilburg University.

S. Džeroski, T. Erjavec, N. Ledinek, P. Pajas,
Z. Žabokrtsky, and A.̌Zele. 2006. Towards a Slovene
dependency treebank. InProc. of the Fifth Intern.
Conf. on Language Resources and Evaluation (LREC).

J. Hajǐc, O. Smřz, P. Zeḿanek, J.̌Snaidauf, and E. Beška.
2004. Prague Arabic dependency treebank: Develop-
ment in data and tools. InProc. of the NEMLAR In-
tern. Conf. on Arabic Language Resources and Tools,
pages 110–117.

Y. Kawata and J. Bartels. 2000. Stylebook for the
Japanese treebank in VERBMOBIL. Verbmobil-
Report 240, Seminar für Sprachwissenschaft, Univer-
sität Tübingen.

M. T. Kromann. 2003. The Danish dependency treebank
and the underlying linguistic theory. InProc. of the
Second Workshop on Treebanks and Linguistic Theo-
ries (TLT).

J. Nilsson, J. Hall, and J. Nivre. 2005. MAMBA meets
TIGER: Reconstructing a Swedish treebank from an-
tiquity. In Proc. of the NODALIDA Special Session on
Treebanks.

K. Oflazer, B. Say, D. Zeynep Hakkani-Tür, and G. T̈ur.
2003. Building a Turkish treebank. In Abeillé
(Abeillé, 2003), chapter 15.

K. Simov and P. Osenova. 2003. Practical annotation
scheme for an HPSG treebank of Bulgarian. InProc.
of the 4th Intern. Workshop on Linguistically Inter-
preteted Corpora (LINC), pages 17–24.

K. Simov, P. Osenova, A. Simov, and M. Kouylekov.
2005. Design and implementation of the Bulgarian
HPSG-based treebank. InJournal of Research on Lan-
guage and Computation – Special Issue, pages 495–
522. Kluwer Academic Publishers.

Erik F. Tjong Kim Sang. 2002. Memory-based shal-
low parsing. Journal of Machine Learning Research,
2(Mar):559–594.

L. van der Beek, G. Bouma, R. Malouf, and G. van No-
ord. 2002. The Alpino dependency treebank. InCom-
putational Linguistics in the Netherlands (CLIN).


