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ABSTRACT
We describe the use of the social reference management website
CiteULike for recommending scientific articles to users, based on
their reference library. We test three different collaborative filter-
ing algorithms, and find that user-based filtering performs best. A
temporal analysis of the data indexed by CiteULike shows that it
takes about two years for the cold-start problem to disappear and
recommendation performance to improve.

Categories and Subject Descriptors
H.3 [Information Storage and Retrieval]: H.3.4 Systems and
Software; H.3.5 Online Information Services; H.3.7 Digital Li-
braries

General Terms
Algorithms, Measurement, Performance, Experimentation

1. INTRODUCTION
One of the trends within the Web 2.0 paradigm is a shift in infor-

mation access from local and solitary, to global and collaborative.
Instead of storing, managing, and accessing personal information
on only one specific computer or browser, personal information
management and access has been moving more and more to the
Web. Social bookmarking websites are clear cases in point: in-
stead of keeping a local copy of pointers to favorite URLs, users
can instead store and access their bookmarks online through a Web
interface. The underlying application then makes all stored infor-
mation sharable among users, allowing for improved searching and
generating recommendations between users with similar interests.

A special kind of social bookmarking services—and the focus of
our paper—are social reference managers such as CiteULike, Con-
notea, Bibsonomy, and 2Collab1 that aid users in managing their
reference collection. All of these services allow users to bookmark
any Web page or reference they choose, and in addition they offer

1Available at http://www.citeulike.org, http://
www.connotea.org, http://www.bibsonomy.org, and
http://www.2collab.com respectively.
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special functionality for certain academic resources, such as linking
to online versions of papers and special access to metadata specific
to academic resources.

All four mentioned bibliographical reference managers encour-
age users to organize their references with one or more tags, or
keywords. These in turn enable users to view all references, from
any user, associated with a chosen tag, as well as information about
the popularity of a reference. This same linking is also applied to
the author level, so that users can browse other users who added ref-
erences to publications written by a specific author. These features
can help users to better cope with the information overload that is
as overwhelming in the academic community as it is on the Web,
with an ever-increasing number of journals, books, and conference
proceedings being published every year. This overload makes it
hard to keep up with interesting new work, or to get a complete
overview of relevant literature on specific topics.

For these features to be effective, active use of the online sys-
tem on the part of the user (searching, browsing) is needed. Our
interest lies in using recommender systems to relieve this burden
and automatically find interesting and related reading material for
the user. A recommender system is a type of personalized infor-
mation filtering technology used to identify a sets of items that are
likely to be of interest to a certain user. One particular class of rec-
ommendation algorithms is collaborative filtering (CF), that base
recommendations on the opinions or actions of other like-minded
users. The motivation here is that a user will be more satisfied with
recommended items that are liked by like-minded users, than by
items that are picked randomly or based on overall popularity.

In this paper, we focus on using one of these social reference
managers, CiteULike, to generate reading lists for scientific arti-
cles based on a user’s online reference library. We describe the
construction of a test collection based on the services offered by
CiteULike and apply three different CF algorithms to our data. We
also analyze the data across its temporal dimension: we use pub-
licly available activity logs to determine how recommendation per-
formance changes as the website grows over time.

The paper is structured as follows. We discuss related work in
Section 2. We discuss CiteULike, how our test collection was cre-
ated, and what issues we ran into in greater detail in Section 3.
In the following Section 4 we describe our experimental setup and
evaluation, followed by the results in Section 5. Section 6 contains
the results of our temporal analysis of the different algorithms. We
conclude in Section 7 and highlight possible future work.

2. RELATED WORK
Most of the work related to recommending interesting informa-

tion with respect to the user’s current interest or task has focused on
creating information management agents. Maes (1997) was among
the first to signal the need for information filtering agents that can
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reduce overload [8]. Since then, several types of agents have been
prototyped and developed for many different fields, such as the
Web, music, and academic writing. See Montaner et al. (2003)
for a comprehensive overview of agents available on the Web.

Yet there have been only a handful of approaches to recommend-
ing interesting academic articles to users, McNee et al. (2006) ar-
guably being the most prominent one. McNee frames the interac-
tion between users and recommender systems, focusing on recom-
mending interesting research papers from a user-centric perspec-
tive. He identifies the different tasks a recommender system could
perform to assist the user, such as finding a starting point for re-
search on a particular topic, and maintaining awareness of a re-
search field. Recommendations are generated on the basis of cita-
tions in scientific papers [10].

Basu et al. (2001) focus on the related problem of recommending
conference paper submissions to reviewing committee members
[1]. They use a content-based approach to paper recommendation,
using the Vector Space model with tf·idf weighting. Another re-
lated area of research is the development of recommender systems
that employ folksonomies. Most of the work so far has focused on
recommending tags for bookmarks. Jäschke et al. (2007), for in-
stance, compared two different CF algorithms with a graph-based
algorithm for recommending tags in Bibsonomy. They found that
the graph-based algorithm outperforms the CF algorithms only for
the top 3 ranks [6]. Mishne (2006) performs similar experiments
when predicting tags associated with blog posts [11]. In our ex-
periments we focus on CiteULike as the social reference manager.
Capocci et al. analyze the small-world properties of the CiteULike
folksonomy [2].

3. CITEULIKE
CiteULike is a website that offers a “a free service to help you

to store, organise, and share the scholarly papers you are reading”2

It allows its users to add their academic reference library to their
online profile on the CiteULike website. At the time of writing,
CiteULike contains around 885,310 unique items, annotated by
27,489 users with 174,322 unique tags. Articles can be stored with
their metadata (in various formats), abstracts, and links to the pa-
pers at the publishers’ websites. Users can also add reading prior-
ities, personal comments, and tags to their papers. CiteULike also
offers the possibility of users setting up and joining groups that con-
nect users sharing academic or topical interests. These group pages
report on recent activity, and offer the possibility of maintaining
discussion fora or blogs. The full text of articles is not accessible
from CiteULike, although links to online articles can be added.

3.1 Constructing a test collection
CiteULike offers daily dumps of their core database2. We used

the dump of November 2, 2007 as the basis for our experiments.
A dump contains all information on which articles were posted by
whom, with which tags, and at what point in time. It does not,
however, contain any of the other metadata described above, so we
crawled this metadata ourselves from the CiteULike website using
the article IDs. We collected the following five types of metadata:

Topic-related metadata including all metadata descriptive of the
article’s topic, such as the title and the publication informa-
tion.

Person-related metadata such as the authors of the article as well
as the editors of the journal or conference proceedings it was
published in.

2See http://www.citeulike.org/faq/data.adp.

Temporal metadata such as the year and, if available, month of
the article’s publication.

Miscellaneous metadata such as the article type. The extracted
data also includes the publisher details, volume and number
information, and the number of pages. DOI and ISSN/ISBN
identifiers were also extracted as well as URLs pointing to
the online whereabouts of the article.

User-specific metadata including the tags assigned by each user,
comments by users on an article, and reading priorities.

As CiteULike offers the possibility of users setting up groups
that connect users that share similar academic and topical interests,
for each group we collected the group name, a short textual descrip-
tion, and a list of its members.

3.2 Characteristics of the collection
After crawling and data clean-up, our collection contained a total

of 1,012,898 different postings, where we define a posting as a user-
item pair in the database, i.e. an item that was added to a CiteULike
user profile. These postings comprised 803,521 unique articles
posted by 25,375 unique users using 232,937 unique tags. Meta-
data was available for 543,433 of the 803,521 articles3. CiteULike
contained 1,243 different groups with 2,301 different users being a
member of one or more groups, corresponding to 9.1% of all users.
We did not crawl the full text of publications, but 33.7% of the
articles included the abstract in their metadata.

4. RECOMMENDING USING CITEULIKE
McNee identifies eight different tasks that a recommender sys-

tem could fulfill in a digital library environment [10]. Not all of
these tasks are equally applicable in the CiteULike environment,
and not all of them can be fulfilled using the collection we created.
However, a social reference manager could arguably fulfill addi-
tional, new tasks not applicable in a digital library environment.
In this paper we focus on the task of generating list of related pa-
pers based on a user’s reference library. This task corresponds most
closely to McNee’s tasks of Fill Out Reference Lists and Maintain
Awareness [10]. In contrast to McNee’s approach of using cita-
tions, we use the direct user-item preference relations to generate
our recommendations from.

4.1 Experimental setup
In order to evaluate different recommender algorithms on the

CiteULike data and to compare the usefulness of the different infor-
mation we have available, we need a proper framework for experi-
mentation and evaluation. Recommender systems evaluation—and
the differences with IR evaluation—have been addressed by, among
others, Herlocker et al. [4, 5], the latter identifying six discernible
recommendation tasks. The recommendation task we evaluate here
is the “Find Good Items” task4, where users are provided with a
ranked list of recommended items, based on their personal profile.

Following common practice in recommender system evaluation
[4, 5, 10], to ensure that we would be able to generate reliable rec-
ommendations, we select a realistic subset of the CiteULike data
set by only keeping the users who have added 20 items or more to
the personal profile. In addition, we filter out all articles that oc-
cur only once, since these items do not contain sufficiently reliable
ties to the rest of the data set, and thus would only introduce noise

3The overwhelming majority of the articles with missing metadata
were spam articles. How we detected this is beyond the focus of
this paper.
4Also known as Top-N recommendation.
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for our CF algorithms. This procedure generates a set of 258,701
user-item pairs, with 2,539 unique users, and 87,908 unique items.

When generating predictions, we withhold 10 randomly selected
items from each user, and generate predictions by using the remain-
ing data as training material. As retrieval algorithms, recommender
algorithms tend to be controlled by several parameters. One way of
optimizing these parameters is by maximizing performance on a
given data set. Such tuning, however, tends to overestimate the ex-
pected performance of the system, so in order to prevent this kind
of overfitting we used 10-fold cross-validation [9].

We first divided our data set into a training and a test set by ran-
domly selecting 10% of the users to be in our test set. Final per-
formance was evaluated on this 10% by withholding 10 items from
each user, and using the remaining profile items together with the
training set to generate the recommendations for those 10%. In
order to properly optimize parameters we divided our training set
(containing 90% of the users) by randomly dividing the users over
10 folds, each containing 10% of the training users. Each fold is
used as a validation set once, with 10 items being withheld for each
validation fold user. The remaining profile items and the data in the
other 9 folds are then used to generate the predictions. The final
values for our evaluation metrics on the withheld items were then
averaged over the 10 folds.

4.2 Evaluation
In our evaluation, we adopt an IR perspective by treating each of

the users as a separate query or topic. The 10 withheld items for
each user make up the relevant items for which we have relevance
judgments. For each user, a ranked list of items is produced and
evaluated on whether these withheld items show up in the result
list. While it is certainly possible and very likely that the recom-
mendation lists contain other recommendations that the user would
find relevant or interesting, we cannot know this without the user
judging them. This means that because our relevance judgments
correspond to items added to a user’s profile, we can never have
any items judged as being not relevant without user intervention.

Herlocker et al. [5] assesses the usefulness of different metrics
for each of the six recommendation tasks they identified. For our
“Find Good Items” task, they find that metrics taking into account
the ranking of the items are most appropriate. We therefore evalu-
ated our recommender system using Mean Average Precision (MAP),
Mean Reciprocal Rank (MRR) and Precision @ 10 (P@10). In
addition to these IR metrics, we also measured coverage: certain
recommendation algorithms need enough data on a user or item for
them to be able to reliably generate recommendations. Not all algo-
rithms will be able to cover every user or item. We therefore mea-
sure user coverage (UCOV), which is the percentage of all users for
which we were able to generate any predictions at all.

4.3 Algorithms
In the preliminary experiments described in this paper we com-

pare three different CF algorithms. The term collaborative filtering
was first used by Goldberg et al. [3] and describes a class of al-
gorithms that, instead of looking at the content, use data about all
users’ preferences for items to generate recommendations for the
so-called ‘active’ user. We use and briefly describe the two most
simple variants: user-based filtering and item-based filtering5. In
user-based filtering, the active user is matched against the database
to find the neighboring users that the active user has a history of
agreeing with. Once this neighborhood has been identified, all ob-
jects in the neighbors’ profiles unknown to the active user are con-
sidered as possible recommendations and sorted by their frequency

5See [14] for an overview of more sophisticated CF algorithms.

in that neighborhood. A weighted aggregate of these frequencies
is used to generate the recommendations [4]. Item-based filtering
turns this around by matching items against the database to find the
neighborhood of similar items [13].

We test three different algorithms implemented in the freely avail-
able Suggest recommendation engine [7]. The first model is an
item-based filtering approach that uses the cosine similarity met-
ric to determine the similarity between items. Model 2 is an item-
based algorithm that calculates similarity based on conditional prob-
ability. Finally, model 3 is a user-based algorithm that uses the co-
sine similarity metric to determine similarity between users. Item-
based filtering tends to perform well when there are more users than
items in the database whereas user-based filtering works better in
the reverse situation. We therefore expect the user-based filtering
algorithm to outperform the other two algorithms.

5. RESULTS
The CF algorithms we employ in our study have one impor-

tant parameter that can be tuned: the neighborhood size k, i.e.
the number of similar users used to generate the predictions. We
tune this parameter for each of the models, using our 10-fold cross-
validation setup described in Section 4.1, varying k between 1 and
500, evaluating performance at each step. Figure 1 displays the
effect of neighborhood size on the MAP scores of the three algo-
rithms for k up to 140; MAP values stay the same for k > 140. The
other metrics show a similar trend over the different k values.
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Figure 1: The effect of neighborhood size k on MAP for the
three algorithms.

The two item-based algorithms, models 1 and 2, both have an
optimal k of 500. Performance increases for Models 1 and 2 as k
increases, but the recommender implementation ran out of mem-
ory when we tried increasing k beyond 500. The optimal value of
k for Model 3 lies between 4 and 8, with none of the differences
in this range being statistically significantly different. We there-
fore picked a k of 5 as the optimal value for Model 3. However,
for all values of k the user-based filtering algorithm significantly
outperforms the item-based filtering algorithm (p < 10−10). Fi-
nal performance of the three models on the test set is displayed in
Table 1. Model 3 outperforms the other models significantly on
all measures (p < 10−6) and shows acceptable performance for a
preliminary approach.

6. TEMPORAL ANALYSIS
CiteULike’s daily database dumps offer us the unique opportu-

nity of analyzing the influence of growth of a social bookmarking



Table 1: Results of our three CF algorithms on the data set.
Model 1 Model 2 Model 3

MAP 0.1307 0.1344 0.2478
MRR 0.2622 0.3004 0.3278
P@10 0.1412 0.1451 0.2524
UCOV 92.09% 92.09% 99.60%

service such as CiteULike on recommendation performance. The
database dumps contain the time stamps for each posting; we used
these to construct growth curves of the different algorithms from a
temporal perspective. We gradually increased the size of our data
set of user-item pairs by a month at a time and used the same setup
and optimal parameters at each temporal step. The first item was
added to CiteULike on November 4, 2004, giving us 37 months of
data. We repeated these steps 10 times and calculated the average
MAP scores.

Figure 2 shows the MAP scores for the three different algorithms
plotted against the months in the CiteULike data set. Throughout
the 37 months, the user-based filtering method always outperforms
the other two item-based models. All CF algorithms achieve rel-
atively high MAP scores in the initial months, after which perfor-
mance remains low and erratic for the first two years. The last
months of 2006 mark a turning point where a critical mass seems
to have been reached. From that point on, recommendation perfor-
mance starts to climb and even triples in the span of one year for all
three algorithms. With the exception of the outliers in the first few
months, this seems to be a clear illustration of the cold-start prob-
lem CF algorithms suffer from at a system-wide level: it is hard
to generate recommendations for new items in the start-up phase,
when there is not enough usage data about new items to make reli-
able correlations with other items [5].
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Figure 2: Performance on the CiteULike data set over time.

7. DISCUSSION & FUTURE WORK
In this paper we demonstrated how a social reference manager

can be used as a test collection for recommending research pa-
pers. The data we collected represent many different aspects of
both users and their annotations, and offers many opportunities for
testing and combining different representations and recommender
algorithms. We found that a user-based filtering algorithm yields
the best performance. The likely explanation for this is that the
data set contains a magnitude more items than users, which makes
it both harder and slower to perform item-based filtering. Another

interesting observation is that the optimal neighborhood size for
item-based filtering is five users. This corresponds rather well to
the average group size of 4.8 on CiteULike.

We also performed a temporal analysis on the data, and identified
a clear cold-start problem for CF algorithms on the CiteULike. The
results show that it took about two years for CF performance to start
improving to a useful level. An interesting question is whether this
two year period is specific to CiteULike or that a similar pattern
would emerge when repeating these experiments on other social
bookmarking websites. This is an important and interesting point
for future work.

In other future work, we plan to experiment with and combine
several different recommender algorithms, based on the different
contextual and metadata information present in the CiteULike data
set. Content-based algorithms should be able to take advantage of
the full text of the documents and the metadata, while activity logs
can be used to take recency effects into account. The CiteULike
folksonomy offers another promising avenue of contextual recom-
mendation material. The different algorithms based on the different
contextual data will then be combined to determine the optimal rec-
ommendation process. Our end goal is to test our methods on users
for one or two of the tasks identified by McNee et al. [10].
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