
Recommender Systems for

Social Bookmarking

PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Universiteit van Tilburg,

op gezag van de rector magnificus,
prof. dr. Ph. Eijlander,

in het openbaar te verdedigen ten overstaan van een
door het college voor promoties aangewezen commissie

in de aula van de Universiteit
op dinsdag 8 december 2009 om 14.15 uur

door

Antonius Marinus Bogers,
geboren op 21 september 1979 te Roosendaal en Nispen

Promotor:

Prof. dr. A.P.J. van den Bosch

Beoordelingscommissie:

Prof. dr. H.J. van den Herik

Prof. dr. M. de Rijke

Prof. dr. L. Boves

Dr. B. Larsen

Dr. J.J. Paijmans

The research reported in this thesis has been funded by SenterNovem / the Dutch Ministry

of Economic Affairs as part of the IOP-MMI À Propos project.

SIKS Dissertation Series No. 2009-42

The research reported in this thesis has been carried out under the auspices of SIKS, the

Dutch Research School for Information and Knowledge Systems.

TiCC Dissertation Series No. 10

ISBN 978-90-8559-582-3

Copyright c© 2009, A.M. Bogers

All rights reserved. No part of this publication may be reproduced, stored in a retrieval sys-

tem, or transmitted, in any form or by any means, electronically, mechanically, photocopying,

recording or otherwise, without prior permission of the author.

“ The Web, they say, is leaving the era of search and entering one of discovery.

What’s the difference? Search is what you do when you’re looking for some-

thing. Discovery is when something wonderful that you didn’t know existed,

or didn’t know how to ask for, finds you. ”
Jeffrey M. O’Brien

iii

PREFACE

First and foremost I would like to thank my supervisor and promotor Antal van den Bosch,
who guided me in my first steps as a researcher, both for my Master’s thesis and my Ph.D.
research. Antal always gave me free reign in investigating many different research prob-
lems, while at the same time managing to steer me in the right direction when the time
called for it. Antal was always able to make time for me or any of the other Ph.D. students,
and read and comment on paper or presentation drafts.

In addition to turning me into a better researcher, Antal was also instrumental in improving
my Guitar Hero skills. Our thesis meetings during your sabbatical doubled as a kind of Rock
’n Roll Fantasy Camp, where we could both unwind from discussing yet another batch of
experiments I had run or was planning to run. Rock on! Antal also shares my passion for
ice hockey. This resulted in us attending Tilburg Trappers games in Stappegoor as well as
our regular discussions of the latest hockey news. Thanks for inviting me to come see the
NHL All Star games in Breda. Hopefully we will meet again in spirit come May 2010 when
the Canucks beat the Penguins in the Stanley Cup finals!

The research presented in this thesis was performed in the context of the À Propos project.
I would like to acknowledge SenterNovem and the Dutch Ministry of Economic Affairs for
funding this project as part of the IOP-MMI program. The À Propos project was started by
Lou Boves, Antal, and Frank Hofstede. I would like to thank Lou and Frank in particular.
Frank was always able to look at my research problems from a different and more practical
angle, and as a result our discussions were always very stimulating. I would also like to Mari
Carmen Puerta-Melguizo, Anita Deshpande, and Els den Os, as well as the other members
and attendees of the project meetings for the pleasant cooperation and helpful comments
and suggestions.

I wish to thank the members of my committee for taking time out of their busy schedules to
read my dissertation and attending my defense: Jaap van den Herik, Maarten de Rijke, Lou
Boves, Birger Larsen, and Hans Paijmans. Special thanks go to Jaap for his willingness to go
through my thesis with a fine-grained comb. The readability of the final text has benefited
greatly from his meticulous attention to detail and quality. Any errors remaining in the
thesis are my own. I would also like to thank Birger for his comments, which helped to dot
the i’s and cross the t’s of the final product. Finally, I would like to thank Hans Paijmans,
who contributed considerably to my knowledge of IR.

iv

Preface v

My Ph.D. years would not have been as enjoyable and successful without my colleagues at
Tilburg University, especially those at the ILK group. It is not everywhere that the bond
between colleagues is as strong as it was in ILK and I will not soon forget the coffee breaks
with the Sulawesi Boys, the BBQs and Guitar Hero parties, lunch runs, after-work drinks,
and the friendly and supportive atmosphere on the 3rd floor of Dante. I do not have enough
room to thank everyone personally here, you know who you are. In your own way, you all
contributed to this thesis.

Over the course of my Ph.D. I have spent many Fridays at the Science Park in Amsterdam,
working with members of the ILPS group headed by Maarten de Rijke. I would like to
thank Erik Tjong Kim Sang for setting this up and Maarten for allowing me to become a
guest researcher at his group. Much of what I know about doing IR research, I learned
from these visits. From small things like visualizing research results and LaTeX layout to IR
research methodology and a focus on empirical, task-driven research. I hope that some of
what I have learned shows in the thesis. I would like to thank all of the ILPS members, but
especially Krisztian, Katja, and Maarten for collaborating with me on expert search, which
has proven to be a very fruitful collaboration so far.

I have also had the pleasure of working at the Royal School of Library and Information
Science in Copenhagen. I am most grateful to Birger Larsen and Peter Ingwersen, for helping
to arrange my visit and guiding me around. Thanks are also due to Mette, Haakon, Charles,
Jette, and the other members of the IIIA group for welcoming me and making me feel at
home. Jeg glæder mig til at arbejde sammen med jer snart.

Thanks are due to Sunil Patel for designing part of the stylesheet of this thesis and to
Jonathan Feinberg of http://www.wordle.net/ for the word cloud on the front of this
thesis. I owe Maarten Clements a debt of gratitude for helping me to more efficiently im-
plement his random walk algorithm. And of course thanks to BibSonomy, CiteULike, and
Delicious for making the research described in this thesis possible.

Finally, I would like to thank the three most important groups of people in my life. My
friends, for always supporting me and taking my mind off my work. Thanks for all the din-
ners, late-night movies, pool games, talks, vacations and trips we have had so far! Thanks
to my parents for always supporting me and believing in me; without you I would not have
been where I am today. Kirstine, thanks for putting up with me while I was distracted by
my work, and thanks for patiently reading and commenting on my Ph.D. thesis. Og tusind
tak fordi du bringer så meget glæde, latter og kærlighed ind i mit liv. Det her er til Timmy
og Oinky!

http://www.wordle.net/

CONTENTS

Preface iv

1 Introduction 1
1.1 Social Bookmarking . 2
1.2 Scope of the Thesis . 3
1.3 Problem Statement and Research Questions . 3
1.4 Research Methodology . 5
1.5 Organization of the Thesis . 6
1.6 Origins of the Material . 7

2 Related Work 9
2.1 Recommender Systems . 9

2.1.1 Collaborative Filtering . 10
2.1.2 Content-based Filtering . 13
2.1.3 Knowledge-based Recommendation . 14
2.1.4 Recommending Bookmarks & References 15
2.1.5 Recommendation in Context . 17

2.2 Social Tagging . 21
2.2.1 Indexing vs. Tagging . 22
2.2.2 Broad vs. Narrow Folksonomies . 24
2.2.3 The Social Graph . 25

2.3 Social Bookmarking . 26
2.3.1 Domains . 27
2.3.2 Interacting with Social Bookmarking Websites 28
2.3.3 Research tasks . 29

I Recommending Bookmarks

3 Building Blocks for the Experiments 35
3.1 Recommender Tasks . 35
3.2 Data Sets . 37

3.2.1 CiteULike . 41
3.2.2 BibSonomy . 42

vi

Contents vii

3.2.3 Delicious . 44
3.3 Data Representation . 46
3.4 Experimental Setup . 47

3.4.1 Filtering . 48
3.4.2 Evaluation . 50
3.4.3 Discussion . 52

4 Folksonomic Recommendation 55
4.1 Preliminaries . 56
4.2 Popularity-based Recommendation . 58
4.3 Collaborative Filtering . 60

4.3.1 Algorithm . 60
4.3.2 Results . 64
4.3.3 Discussion . 64

4.4 Tag-based Collaborative Filtering . 66
4.4.1 Tag Overlap Similarity . 66
4.4.2 Tagging Intensity Similarity . 68
4.4.3 Similarity Fusion . 68
4.4.4 Results . 70
4.4.5 Discussion . 72

4.5 Related work . 74
4.6 Comparison to Related Work . 76

4.6.1 Tag-aware Fusion of Collaborative Filtering Algorithms 77
4.6.2 A Random Walk on the Social Graph . 78
4.6.3 Results . 80
4.6.4 Discussion . 81

4.7 Chapter Conclusions and Answer to RQ 1 . 82

5 Exploiting Metadata for Recommendation 85
5.1 Contextual Metadata in Social Bookmarking . 86
5.2 Exploiting Metadata for Item Recommendation 88

5.2.1 Content-based Filtering . 88
5.2.2 Hybrid Filtering . 91
5.2.3 Similarity Matching . 93
5.2.4 Selecting Metadata Fields for Recommendation Runs 94

5.3 Results . 95
5.3.1 Content-based Filtering . 95
5.3.2 Hybrid Filtering . 97
5.3.3 Comparison to Folksonomic Recommendation 98

5.4 Related Work . 99
5.4.1 Content-based Filtering . 99
5.4.2 Hybrid Filtering . 101

5.5 Discussion . 102
5.6 Chapter Conclusions and Answer to RQ 2 . 105

6 Combining Recommendations 107
6.1 Related Work . 108

6.1.1 Fusing Recommendations . 108

Contents viii

6.1.2 Data Fusion in Machine Learning and IR 110
6.1.3 Why Does Fusion Work? . 111

6.2 Fusing Recommendations . 112
6.3 Selecting Runs for Fusion . 114
6.4 Results . 115

6.4.1 Fusion Analysis . 117
6.4.2 Comparing All Fusion Methods . 119

6.5 Discussion & Conclusions . 120
6.6 Chapter Conclusions and Answer to RQ 3 . 121

II Growing Pains: Real-world Issues in Social Bookmarking

7 Spam 125
7.1 Related Work . 126
7.2 Methodology . 128

7.2.1 Data Collection . 129
7.2.2 Data Representation . 130
7.2.3 Evaluation . 132

7.3 Spam Detection for Social Bookmarking . 132
7.3.1 Language Models for Spam Detection . 133
7.3.2 Spam Classification . 135
7.3.3 Results . 136
7.3.4 Discussion and Conclusions . 138

7.4 The Influence of Spam on Recommendation . 140
7.4.1 Related Work . 140
7.4.2 Experimental Setup . 141
7.4.3 Results and Analysis . 142

7.5 Chapter Conclusions and Answer to RQ 4 . 145

8 Duplicates 147
8.1 Duplicates in CiteULike . 148
8.2 Related Work . 149
8.3 Duplicate Detection . 151

8.3.1 Creating a Training Set . 151
8.3.2 Constructing a Duplicate Item Classifier 153
8.3.3 Results and Analysis . 157

8.4 The Influence of Duplicates on Recommendation 160
8.4.1 Experimental Setup . 160
8.4.2 Results and Analysis . 162

8.5 Chapter Conclusions and Answer to RQ 5 . 164

III Conclusion

9 Discussion and Conclusions 169
9.1 Answers to Research Questions . 169
9.2 Recommendations for Recommendation . 172

Contents ix

9.3 Summary of Contributions . 173
9.4 Future Directions . 174

References 177

Appendices

A Collecting the CiteULike Data Set 191
A.1 Extending the Public Data Dump . 191
A.2 Spam Annotation . 193

B Glossary of Recommendation Runs 195

C Optimal Fusion Weights 197

D Duplicate Annotation in CiteULike 203

List of Figures 205

List of Tables 207

List of Abbreviations 209

Summary 211

Samenvatting 215

Curriculum Vitae 219

Publications 221

SIKS Dissertation Series 223

TiCC Dissertation Series 229

C
H

A
P

T
E

R 1
INTRODUCTION

For the past two decades, the World Wide Web has expanded at enormous rate. The first
generation of the World Wide Web (WWW) enabled users to have instantaneous access
to a large diversity of knowledge items. The second generation of the WWW is usually
denoted by Web 2.0. It signifies a fundamental change in the way people interact with and
through the World Wide Web. Web 2.0 is also referred to as the participatory Web. It can be
characterized as a paradigm that facilitates communication, interoperability, user-centered
design, and information sharing and collaboration on the Web (O’Reilly, 2005; Sharma,
2008). Moreover, in the transition to Web 2.0 we see a paradigm shift from local and
solitary to global and collaborative. Also, this shift coincides with a shift from accessing and
creating information to understanding information and understanding the people who deal
with this information. Instead of creating, storing, managing, and accessing information
on only one specific computer or browser, information management and access has been
moving to many distributed places on the Web. Collaboratively created websites such as
Wikipedia are edited and accessed by anyone, and users can document and share any aspect
of their lives online using blogs, social networking sites, and video and photo sharing sites.

This thesis deals with recommender systems, social tagging, and social bookmarking. What
are the relations between these three elements, and can we build recommender systems that
profit from the presence of the other two elements? Assuming that we can, what are the
threats from the outside or inside of this new part of the WWW? In the thesis we deal with
spam as the outside threat, and duplicates as the inside threat. The aim of the thesis is to
understand the symbiosis of recommender systems, social tagging, and social bookmarking,
and to design mechanisms that successfully counter the threats from the outside and from
the inside.

The course of this chapter is as follows. We introduce social bookmarking in Section 1.1. It is
followed by a description of the scope of the thesis. The problem statement and five research
questions are formulated in Section 1.3. Section 1.4 describes the research methodology.
The structure of the thesis is provided in Section 1.5. Finally, Section 1.6 points to the
origins of the material.

1

Chapter 1. Introduction 2

1.1 Social Bookmarking

Social bookmarking is a rather new phenomenon: instead of keeping a local copy of point-
ers to favorite URLs, users can instead store and access their bookmarks online through
a Web interface. The underlying application then makes all stored information shareable
among users. Closely related to social bookmarking websites are the so-called social refer-
ence managers, which follow the same principle, but with a focus on the online management
and access of scientific articles and papers. Social bookmarking websites have seen a rapid
growth in popularity and a high degree of activity by their users. For instance, Delicious1

is one of the most popular social bookmarking services. It received an average of 140,000
posts per day in 2008 according to the independently sampled data collected by Philipp
Keller2. In addition to the aforementioned functionality, most social ‘storage’ services also
offer the user the opportunity to describe by keywords the content they added to their per-
sonal profile. These keywords are commonly referred to as tags. They are an addition to
e.g., the title and summary metadata commonly used to annotate content, and to improve
the access and retrievability of a user’s own bookmarked Web pages. These tags are then
made available to all users, many of whom have annotated many of the same Web pages
with possibly overlapping tags. This results in a rich network of users, bookmarks, and tags,
commonly referred to as a folksonomy. This social tagging phenomenon and the resulting
folksonomies have become a staple of many Web 2.0 websites and services (Golder and
Huberman, 2006).

The emerging folksonomy on a social bookmarking website can be used to enhance a variety
of tasks, such as searching for specific content. It can also enable the active discovery of new
content by allowing users to browse through the richly connected network. A user could
select one of his3 tags to explore all bookmarks annotated with that tag by the other users in
the network, or locate like-minded users by examining a list of all other users who added a
particular bookmark, possibly resulting in serendipitously discovered content (Marlow et al.,
2006). Both browsing and searching the system, however, require active user participation
to locate new and interesting content. As the system increases in popularity and more users
as well as content enter the system, the access methods become less effective at finding all
the interesting content present in the system. The information overload problem caused
by this growing influx of users and content means that search and browsing, which require
active participation, are not always the most practical or preferable ways of locating new
and interesting content. Typically, users only have a limited amount of time to go through
the search results. Assuming users know about the existence of the relevant content and
know how to formulate the appropriate queries they may arrive in time at the preferred
places. But what happens when the search and browse process becomes less effective? And
what if the user does not know about all relevant content available in the system? Our
interest, and the focus of this thesis, lies in using recommender systems to help the user with
this information overload problem, and automatically find interesting content for the user.
A recommender system is a type of personalized information filtering technology used to
identify sets of items that are likely to be of interest to a certain user, using a variety of

1http://www.delicious.com/
2Available at http://deli.ckoma.net/stats; last visited January 2009.
3In this thesis, we use ‘his’ and ’he’ to refer to both genders.

http://www.delicious.com/
http://deli.ckoma.net/stats

Chapter 1. Introduction 3

information sources related to both the user and the content items (Resnick and Varian,
1997).

1.2 Scope of the Thesis

In this thesis, we investigate how recommender systems can be applied to the domain of
social bookmarking. More specifically, we want to investigate the task of item recommenda-
tion. For this purpose, interesting and relevant items—bookmarks or scientific articles—are
retrieved and recommended to the user. Recommendations can be based on a variety of
information sources about the user and the items. It is a difficult task as we are trying to
predict which items out of a very large pool would be relevant given a user’s interests, as
represented by the items which the user has added in the past. In our experiments we dis-
tinguish between two types of information sources. The first one is usage data contained in
the folksonomy, which represents the past selections and transactions of all users, i.e., who
added which items, and with what tags. The second information source is the metadata
describing the bookmarks or articles on a social bookmarking website, such as title, de-
scription, authorship, tags, and temporal and publication-related metadata. We are among
the first to investigate this content-based aspect of recommendation for social bookmark-
ing websites. We compare and combine the content-based aspect with the more common
usage-based approaches.

Because of the novelty of applying recommender systems to social bookmarking websites,
there is not a large body of related work, results, and design principles to build on. We
therefore take a system-based approach for the evaluation our work. We try to simulate, as
realistically as possible, the reaction of the user to different variants of the recommenda-
tion algorithms in a controlled laboratory setting. We focus on two specific domains: (1)
recommending bookmarks of Web pages and (2) recommending bookmarked references to
scientific articles. It is important to remark, however, that a system-based evaluation can
only provide us with a provisional estimate of how well our algorithms are doing. User sat-
isfaction is influenced by more than just recommendation accuracy (Herlocker et al., 2004)
and it would be essential to follow up our work with an evaluation on real users in realistic
situations. However, this is not the focus of the thesis, nor will we focus on tasks such as tag
recommendation or finding like-minded users. We focus strictly on recommending items.

1.3 Problem Statement and Research Questions

As stated above, the rich information contained in social bookmarking websites can be used
to support a variety of tasks. We consider three important ones: browsing, search, and
recommendation. From these three, we focus on (item) recommendation in this thesis. In
this context we may identify two types of key characteristics of social bookmarking websites
that can be used in the recommendation process. We remark that the information sources
represented by these characteristics are not always simultaneously available in every rec-
ommendation scenario. The resulting recommendations are produced by (1) collaborative

Chapter 1. Introduction 4

filtering algorithms and (2) content-based filtering algorithms. We briefly discuss both types
of algorithms and the associated characteristics below.

Collaborative filtering algorithms Much of the research in recommender systems has fo-
cused on exploiting sets of usage patterns that represent user preferences and transac-
tions. The class of algorithms that operate on this source of information are called Col-
laborative Filtering (CF) algorithms. They automate the process of “word-of-mouth”
recommendation: items are recommended to a user based on how like-minded users
rated those items (Goldberg et al., 1992; Shardanand and Maes, 1995). In the so-
cial bookmarking domain, we have an extra layer of usage data at our disposal in
the folksonomy in the form of tags. This extra layer of collaboratively generated tags
binds the users and items of a system together in yet another way, opening up many
possibilities for new algorithms that can take advantage of this data.

Content-based filtering algorithms Social bookmarking services and especially social ref-
erence managers are also characterized by the rich metadata describing the content
added by their users. Recommendation on the basis of textual information is com-
monly referred to as content-based filtering (Goldberg et al., 1992) and matches the
item metadata against a representation of the user’s interest to produce new recom-
mendations. The metadata available on social bookmarking services describe many
different aspects of the items posted to the website. It may comprise both personal
information, such as reviews and descriptions, as well as general metadata that is
the same for all users. While the availability of metadata is not unique to social
bookmarking—movie recommenders, for instance, also have a rich set of metadata at
their disposal (Paulson and Tzanavari, 2003)—it might be an important information
source for generating item recommendations.

Having distinguished the two types of characteristics of social bookmarking websites, we
are now able to formulate our problem statement (PS).

PS How can the characteristics of social bookmarking websites be exploited to
produce the best possible item recommendations for users?

To address this problem statement, we formulate five research questions. The first two
research questions belong together. They read as follows.

RQ 1 How can we use the information represented by the folksonomy to sup-
port and improve the recommendation performance?

RQ 2 How can we use the item metadata available in social bookmarking sys-
tems to provide accurate recommendations to users?

After answering the first two questions, we know how to exploit in the best manner the two
types of information sources—the folksonomy and item metadata—to produce accurate
recommendations. This leads us to our third research question.

Chapter 1. Introduction 5

RQ 3 Can we improve performance by combining the recommendations gen-
erated by different algorithms?

These are the three main research questions. As mentioned earlier, we evaluate our answers
to these questions by simulating the user’s interaction with our proposed recommendation
algorithms in a laboratory setting. However, such an idealized perspective does not take
into account the dynamic growth issues caused by the increasing popularity of social book-
marking websites. Therefore, we focus on two of these growing pains. There is one pain
attacking social bookmarking websites from the outside, spam. The other one, duplicate
content, attacks a social bookmarking website from the inside. They lead to our final two
research questions.

RQ 4 How big a problem is spam for social bookmarking services?

RQ 5 How big a problem is the entry of duplicate content for social bookmark-
ing services?

Wherever it is applicable and aids our investigation, we will break down these questions
into separate and even more specific research questions.

1.4 Research Methodology

The research methodology followed in the thesis comprises five parts: (1) reviewing the
literature, (2) analyzing the findings, (3) designing the recommendation algorithms, (4)
evaluating the algorithms, and (5) designing protection mechanisms for two growing pains.
First, we conduct a literature review to identify the main techniques, characteristics, and
issues in the fields of recommender systems, social tagging, and social bookmarking, and
in the intersection of the three fields. In addition, Chapters 4 through 8 each contain short
literature reviews specifically related to the work described in the respective chapters.

Second, we analyze the findings from the literature. We use these in the third part of our
methodology to guide us in the development of recommendation algorithms specifically
suited for item recommendation on social bookmarking websites.

Fourth, we evaluate our recommendation algorithms in a quantitative manner. The build-
ing blocks of our quantitative evaluation are described in more detail in Chapter 3. Our
quantitative evaluation is based on a so-called backtesting approach to evaluation that is
common in recommender systems literature (Breese et al., 1998; Herlocker et al., 2004;
Baluja et al., 2008). In backtesting, we evaluate on a per-user basis. We withhold ran-
domly selected items from each user profile, and generate recommendations by using the
remaining data as training material. If a user’s withheld items are predicted at the top of the
ranked list of recommendations, then the algorithm is considered to perform well for that
user. The performance of a recommendation algorithm is averaged over the performance
for all individual users. In our evaluation we employ cross-validation, which can provide a

Chapter 1. Introduction 6

reliable estimate of the true generalization error of our recommendation algorithms (Weiss
and Kulikowski, 1991). Our experimental setup is described in more detail in Section 3.4.

The fifth and final part of our research methodology involves designing protection for social
bookmarking websites and our proposed recommendation algorithms against two growing
pains: spam and duplicate content. For both pains we analyze how extensive the problem is
for one of our data sets. We then design algorithms to automatically detect this problematic
content. Finally, we perform a robustness analysis of the recommendation algorithms we
proposed in Part I against spam and duplicates.

1.5 Organization of the Thesis

The thesis consists of two main parts. The first part is ‘Recommending Bookmarks’, which
ranges from Chapter 3 to Chapter 6, both inclusive. The second main part is ‘Growing
Pains’, which covers Chapters 7 and 8. The two Parts are preceded by two introductory
chapters. Chapter 1 contains an introduction of the thesis as well as the formulation of
a problem statement and five research questions. Moreover, the research methodology is
given. Chapter 2 contains a literature review. Below we provide a brief overview of the
contents of Parts I and II.

Part I The core of our recommendation experiments is contained in Part I. It starts in Chap-
ter 3 with an overview of the building blocks of our quantitative evaluation. We start
by formally defining the recommendation task we are trying to solve: recommending
interesting items to users based on their preferences. We then introduce our data sets
and describe how they were collected. We discuss our experimental setup, from data
pre-processing and filtering to our choice of evaluation metrics.

Then, in Chapter 4 we investigate the first of two important characteristics of social
bookmarking systems: the presence of the folksonomy. We propose and compare
different options for using the folksonomy in item recommendation for social book-
marking (RQ 1).

In Chapter 5, we investigate the usefulness of item metadata in the recommendation
process, the other characteristic of social bookmarking websites, and examine how
we can use this metadata to improve recommendation performance (RQ 2).

Chapter 6 concludes Part I by examining different options for combining these two
characteristics to see if we can improve upon our best-performing algorithms from
Chapters 4 and 5 by combining the output of the different algorithms into a new list
of recommendations (RQ 3).

Part II In Part II, we dive into the periphery of recommendation, and zoom in on two spe-
cific growing pains that social bookmarking services encounter as they become more
popular: spam and duplicate content. In Chapter 7 we take a look at the problem
of spam in social bookmarking websites to attempt to quantify the problem. We pro-
pose a spam detection algorithm based on a combination of language models and the

Chapter 1. Introduction 7

nearest-neighbor algorithm. We also investigate the influence spam can have on rec-
ommending items for social bookmarking websites in a case study on one of our data
sets (RQ 4).

In Chapter 8 we take a similar approach to the problem of duplicate content. We start
by quantifying the problem and then construct a classifier that can automatically iden-
tify duplicate item pairs in one of our data sets. Finally, we investigate the influence
of duplicates on recommendation performance in a case study on one of our data sets.

Part III concludes the thesis. We revisit our research questions and the answers we found.
Then we answer the problem statement and formulate our conclusions. We also list future
research directions, drawing on the work described in this thesis.

Additional information that would interrupt the narrative is placed in Appendices A, D, and
C, and referred to in the text where applicable. We also list some mark-up conventions here.
Tags feature prominently in our thesis; for clarity we print them with a sans-serif font, e.g.,
as information-retrieval or toread. We print metadata fields with a fixed-width font, e.g.,
as TITLE or ABSTRACT. We experiment with many different combinations of algorithms and
similarity metrics, each resulting in a set of recommendations for a group of test users. We
will refer to such output as a recommendation run which is made up of a list of recom-
mendations. Different variants of an algorithm are marked up as RUNNAME1 or RUNNAME2
where it helps to clarify the discussion.

1.6 Origins of the Material

This thesis is partly based on papers that have already been published or have been submit-
ted. Early versions of the experiments with the CiteULike data set in Part I were described
in Bogers and Van den Bosch (2008a), and later expanded to include more algorithms and
more data sets in Bogers and Van den Bosch (2009b). In an earlier stage, the foundations of
the work on content-based recommendation were laid in Bogers and Van den Bosch (2007).
Finally, the work on spam detection described in Part II was published first in Bogers and
Van den Bosch (2008b) and in expanded form in Bogers and Van den Bosch (2009a).

C
H

A
P

T
E

R 2
RELATED WORK

The work presented in this thesis is novel in (1) its application of recommendation algo-
rithms to social bookmarking websites, and (2) its incorporation of the information rep-
resented by the folksonomy and the metadata on those websites. This chapter serves as
an introduction into general related work covering some subareas of our work. All related
work specifically relevant to the work described in each of the following chapters will be
discussed in those respective chapters.

We start this chapter in Section 2.1 by introducing recommender systems: first, a brief his-
tory of the field will be given, followed by the most popular algorithms and applications, as
well as the most common problems that the recommender systems are suffering. Then, we
take a more detailed look at related work on recommending Web bookmarks and references
to scientific articles. We briefly discuss the role of the user and context in recommendation.
In Section 2.2 we closely consider the phenomenon of social tagging which has become a
big part of the Web 2.0 paradigm. We compare it to the traditional view on indexing by
information specialists and we discuss two different types of social tagging. We establish
that social bookmarking services are a class of social websites that lean heavily on social
tagging for managing their content. Section 2.3 discusses the rise of social bookmarking
services and their characteristics, as well as research into the different user tasks performed
on social bookmarking websites.

2.1 Recommender Systems

The explosive growth of the World Wide Web in the 1990s resulted in a commensurate
growth of the amount of information available online, outgrowing the capacity of individ-
ual users to process all this information. This prompted a strong interest in the specific
research fields and technology that could help manage this information overload. The most
characteristic fields are information retrieval and information filtering. As a research field, in-
formation retrieval (IR) originated in the 1950s and is concerned with automatically match-
ing a user’s information need against a collection of documents. The 1990s saw a change

9

Chapter 2. Related Work 10

in focus from small document collections to the larger collections of realistic size needed to
cope with the ever-growing amount of information on the Web. Information filtering (IF)
systems aim to help the users make optimal use of their limited reading time by filtering out
unwanted information in order to expose only the relevant information from a large flow of
information, such as news articles (Hanani et al., 2001). Typically, such systems construct a
model of a user’s interests and match that against the incoming information objects. While
IR and IF are considered separate research fields, they share many characteristics, such as a
focus on analyzing textual content (Belkin and Croft, 1992).

A third type of technology designed to combat information overload are recommender sys-
tems, which have their origin in the field of information filtering (Hanani et al., 2001). A
recommender system is used to identify sets of items that are likely to be of interest to a
certain user, exploiting a variety of information sources related to both the user and the
content items. In contrast to information filtering, recommender systems actively predict
which items the user might be interested in and add them to the information flowing to the
user, whereas information filtering technology is aimed at removing items from the infor-
mation stream (Hanani et al., 2001). Over the past two decades many different recommen-
dation algorithms have been proposed for many different domains. In Subsections 2.1.1
through 2.1.3, we discuss the three most common classes of algorithms: collaborative fil-
tering, content-based filtering, and knowledge-based recommendation. We explain how the
algorithms work, and discuss the most important advantages and problems of each algo-
rithm. Then, in Subsection 2.1.4, we discuss related work on recommendation Web pages
and scientific articles. We conclude this section by briefly discussing the role of the user and
context in the recommendation process in Subsection 2.1.5.

Finally, we would like to remark that recommender systems technology has also been ap-
plied to a variety of different domains, such as online stores (Linden et al., 2003), movies
(Herlocker et al., 1999), music (Celma, 2008), Web pages (Joachims et al., 1997), e-mail
(Goldberg et al., 1992), books (Mooney and Roy, 2000), news articles (Das et al., 2007),
scientific articles (Budzik and Hammond, 1999), and even jokes (Goldberg et al., 2001). In
October 2006, it also spawned a million dollar competition in the form of the Netflix Prize1,
aimed at designing a recommender system that significantly outperforms Netflix’s own Cin-
eMatch system. We refer the reader to Montaner et al. (2003) for a more comprehensive
overview of recommender systems and domains.

2.1.1 Collaborative Filtering

Arguably the most popular class of recommendation algorithms, collaborative filtering (CF),
descend from work in the area of information filtering. CF algorithms try to automate the
process of “word-of-mouth” recommendation: items are recommended to a user based on
how like-minded users rated those items (Shardanand and Maes, 1995). The term ‘collabo-
rative filtering’ was first used by Goldberg et al. (1992), to describe their Tapestry filtering
system, which allowed users to annotate documents and e-mail messages. Other users could
then request documents annotated by certain people, but identifying these people was left

1http://www.netflixprize.com/

http://www.netflixprize.com/

Chapter 2. Related Work 11

to the user. Subsequent CF approaches automated this process of locating the nearest neigh-
bors of the active user. Important early work was done by Resnick et al. (1994) on their
GROUPLENS system for recommending Usenet articles, and by Shardanand and Maes (1995)
on their RINGO music recommender system. They were the first to correlate the rating be-
havior between users in order to (1) determine the most similar neighbors and (2) use them
to predict interest in new items. This work was expanded upon by Breese et al. (1998) and
Herlocker et al. (1999), who performed the first large-scale evaluation and optimization of
collaborative filtering algorithms. Herlocker et al. (2004) also published important work on
evaluating recommender systems, which we adhere to in our experimental setup described
in Chapter 3.

CF algorithms exploit set of usage patterns that represent user preferences and transac-
tions to match them with those of people who share the same tastes or information needs.
After locating a possible match, the algorithm then generate the recommendations. The
preference patterns can be directly elicited from the user. A telling example is the Amazon
website2 where customers are asked to rate an item on a scale from 1 to 5 stars. The pat-
terns can also be inferred implicitly from user actions, such as purchases, reading time, or
downloads. After gathering the user opinions, either explicitly or implicitly, they are com-
monly represented in a user-item ratings matrix, such as the ones shown in Figure 2.1. The
majority of the cells in these matrix are empty, because it is usually impossible for a user to
select, rate, or purchase all items in the system. CF algorithms operate on such a user-item
matrix to predict values for the empty entries in the matrix.

u 1

 1

1 1

1

1 1

1

1

1

1

1

1

11

1

1

1 1 11

3 3

2

4 1

4

4

4

3

2

5

53

5

2

5 5 31

users

u  6

itemsi i 8 1
itemsi i 8

Explicit ra+ngs Implicit ra+ngs

Figure 2.1: Two examples of user-item matrices for a toy data set of six users and eight
items. Values in the matrix can be ratings in the case of explicit user opinions (left), or
unary in the case of implicit user activity (right).

CF algorithms are commonly divided into two types, memory-based algorithms and model-
based algorithms, analogous to the way machine learning algorithms can be categorized into
two classes.

2http://www.amazon.com/

http://www.amazon.com/

Chapter 2. Related Work 12

Memory-based Collaborative Filtering Memory-based algorithms are also known as lazy
recommendation algorithms, because they defer the actual computational effort of predict-
ing a user’s interest in an item to the moment a user requests a set of recommendations. The
training phase of a memory-based algorithm consists of simply storing all the user ratings
into memory. There are two variants of memory-based recommendation and both are based
on the k-Nearest Neighbor algorithm from the field of machine learning (Aha et al., 1991):
user-based filtering and item-based filtering.

In user-based filtering, the active user is matched against the ratings matrix to find the
neighboring users with which the active user has a history of agreeing. This is typically
done using metrics such as Pearson’s correlation coefficient or the cosine similarity. Once
this neighborhood has been identified, all items in the neighbors’ profiles unknown to the
active user are considered as possible recommendations and sorted by their frequency in
that neighborhood. A weighted aggregate of these frequencies is used to generate the rec-
ommendations (Herlocker et al., 1999). Item-based filtering was proposed by Sarwar et al.
(2001) and is the algorithm of choice of the online store Amazon (Linden et al., 2003). It
focuses on finding the most similar items instead of the most similar users. As in user-based
filtering, similarities between item pairs are calculated using Pearson’s correlation coeffi-
cient or the cosine similarity (Breese et al., 1998). Items are considered to be similar when
the same set of users has purchased them or rated them highly. For each item of an active
user, the neighborhood of most similar items is identified. Each of the top k neighbors is
placed on a candidate list along with its similarity to the active user’s item. Similarity scores
of items occurring multiple times in the candidate list are added. The candidate list is sorted
on these aggregated similarity scores and the top N recommendations are then presented
to the user (Sarwar et al., 2001; Karypis, 2001). We explain both algorithms in more detail
in Section 4.3.

Model-based Collaborative Filtering Also known as eager recommendation algorithms,
model-based CF algorithms do most of the hard work in the training phase, where they
construct a predictive model of the recommendation problem. Generating the recommen-
dations is then a quick and straightforward matter of applying the derived model3. Many
different machine learning algorithms have been applied in recommender systems, such as
Naive Bayes (Breese et al., 1998) and rule induction (Basu et al., 1998), with more em-
phasis on latent factor models in the past decade. Latent factor models try to reduce the
dimensionality of the space of user-item ratings by mapping users and items to the same la-
tent factor space (Koren, 2008). The users and items are then related to each other through
these latent factors. The factors can range in ease of interpretation from intuitive, such
as movie genres or ‘amount of plot twists’, to less well defined dimensions, such as ‘quirky
characters’, or even completely uninterpretable dimensions of the user-item relation (Koren,
2008). Examples of latent factor techniques applied to recommendation include Singular
Value Decomposition (SVD) by Sarwar et al. (2002), factor analysis by Canny (2002), Prob-
abilistic Latent Semantic Analysis (PLSA) by Hofmann (2004), and non-negative matrix
factorization by Koren (2008).

3Note that when the similarity computations are pre-computed in, for instance, a nightly cycle, the user-
based and item-based filtering algorithms both turn into eager recommendation algorithms.

Chapter 2. Related Work 13

Advantages and Problems of Collaborative Filtering CF algorithms have several advan-
tages, such as being able to take the quality of an item—or any lack thereof—into account
when recommending items, especially in the case of explicit user ratings. For instance, a lo-
cal band might fall in the same musical genre as an internationally renowned rock band, but
this does not guarantee that they are of the same quality. This shows that recognizing the
quality of items is clear advantage of CF. By taking actual user preferences into account, CF
algorithms can prevent poor recommendations. A second advantage is that CF algorithms
are especially useful in domains where content analysis is difficult or costly, such as movie
and music recommendation, without requiring any domain knowledge (Burke, 2002).

While the quality of CF algorithms tends to improve over time, the biggest problem is the
startup phase of the recommender system, when there are already many items in the sys-
tem, but few users and no ratings. This is commonly referred to as the cold-start problem
and means the recommender system cannot generate any recommendations (Schein et al.,
2002). Solutions to this problem include using other data sets to seed the system, and us-
ing different recommendation algorithms in this startup phase that do not suffer from this
problem. Even after acquiring more ratings from the users, sparsity of the user-item matrix
can still be a problem for CF. A second problem is what is referred to as the ‘gray sheep’
problem according to Claypool et al. (1999), which describes the difficulty of recommend-
ing for people who are not part of a clear group. Collaborative recommenders work best for
user who fit into a specific niche with many similar neighbors (Burke, 1999).

2.1.2 Content-based Filtering

Content-based recommendation algorithms, also known as content-based filtering, form the
second popular class of algorithms. They can be seen as an extension of the work done
on information filtering (Hanani et al., 2001). Typically, content-based filtering approaches
focus on building some kind of representation of the content in a system and then learning a
profile of a user’s interests. The content representations are then matched against the user’s
profile to find the items that are most relevant to that user. As with CF, the representations
of the user profiles are long-term models, and updated as more preference information
becomes available (Burke, 2002). Usually, content-based filtering for recommendation is
approached as either an IR problem, where document representations have to be matched
to user representations on textual similarity; or as a machine learning problem, where the
textual content of the representations are incorporated as feature vectors, which are used to
train a prediction algorithm. Examples of the IR approach include Whitman and Lawrence
(2002) and Bogers and Van den Bosch (2007); examples of the machine learning point of
view include Lang (1995) and Mooney and Roy (2000). In Chapter 5 we propose different
content-based recommendation algorithms to incorporate the metadata present in social
bookmarking systems, so we refer to Section 5.4 for a more extensive discussion of related
work in content-based filtering.

Advantages and Problems of Content-based Filtering A clear advantage of content-
based filtering algorithms is that they do not require domain knowledge, and that it is suffi-
cient to collect implicit feedback from the users about their item preferences. This can make

Chapter 2. Related Work 14

content-based filtering the preferred algorithm in domains where eliciting explicit ratings
from users is difficult or cumbersome, and where domain knowledge is hard to come by. A
second advantage is that content-based filtering algorithms are better at finding topically
similar items than CF algorithms because of their explicit focus on textual similarity. How-
ever, this can be a disadvantage in domains where content analysis is difficult or impractical
to do in large numbers, such as movies and music. Content-based filtering algorithms also
tend to get stuck in a ‘well of similarity’ (Rashid et al., 2002), where they can only recom-
mend items from a narrow topic range; serendipitous recommendations can therefore be
hard to achieve.

2.1.3 Knowledge-based Recommendation

All personalized recommendation algorithms attempt to infer which items a user might
like. Collaborative filtering algorithms do this based on the behavior of the user and other
like-minded users, whereas content-based filtering approaches do this based on the textual
representations of the user’s interests and the available items. A third class of recommenda-
tion algorithms is formed by knowledge-based algorithms. They use rules and patterns, and
recommend items based on functional knowledge of how a specific item meets a particular
user need (Burke, 2002). Such techniques allow the algorithm to reason about the relation-
ship between a user and the available items. This can prevent a recommender system from
generating useless recommendations. An example of such a useless recommendation would
be recommending milk to a supermarket shopper: the odds of buying milk are so high that
milk will always be correlated with everything else in a user’s shopping basket, and thus
always recommended to the user. Because a knowledge-based recommender system knows
what foods ought to go together, it can screen out such useless suggestions (Burke, 1999).

Knowledge-based recommender systems often borrow techniques from the field of case-
based reasoning (CBR), which is useful for solving constraint-based problems such as the
‘milk’ problem. In CBR, users can specify content-based attributes which limit the returned
recommendation set. Old problem-solving cases are stored by the CBR system, and new
situations are then compared against these old cases with the most similar cases being
used for solving the new problem (Burke, 1999; McNee, 2006). Recommender systems
using such techniques support rating items on multiple dimensions. An example is the
ENTREE restaurant recommender system developed by Burke et al. (1997). ENTREE allows
restaurants to be rated on price, food quality, atmosphere, service, and other dimensions.

Advantages and Problems of Knowledge-based Recommendation Rating content on
multiple dimensions allows the user to provide a rich specification of his recommendation
need, which in turn results in more satisfying recommendations. An second advantage of
knowledge-based recommendation is that it does not suffer from the cold start problem,
and that it allows for intuitive explanations of why a certain item, such as a restaurant,
was recommended. In addition to the ENTREE recommender system, other examples of
knowledge-based recommender systems are given by Schmitt and Bergmann (1999), Towle
and Quinn (2000), and Van Setten et al. (2004). The biggest problem of knowledge-based
algorithms is the need for an explicit knowledge acquisition phase (Burke, 2002), which is

Chapter 2. Related Work 15

difficult in domains without a rich set of attributes. As a result, knowledge-based recom-
mendation is not as popular as the other two classes of algorithms. We do not consider
knowledge-based algorithms for our recommendation experiments because we would run
into this knowledge acquisition bottleneck when porting our algorithms from one domain to
another. Instead, we take a data-driven approach and restrict ourselves to CF and content-
based filtering in Chapters 4 and 5 because they match the two characteristic information
sources available on social bookmarking services: the folksonomy and metadata.

2.1.4 Recommending Bookmarks & References

In this thesis, we focus on recommendation for social bookmarking websites covering two
different domains: Web pages and scientific articles. While there is little related work
on item recommendation for social bookmarking, there have been plenty of stand-alone
approaches to recommending Web pages and scientific articles. Most of these are focused
around the concept of an Information Management Assistant (or IMA), that locates and
recommends relevant information for the user by inferring a model of the user’s interests
(Budzik and Hammond, 1999). One of the earliest examples of such a personal information
agent was the Memex system envisioned by Vannevar Bush, which was a “device in which
an individual stores all his books, records, and communications” and offered the possibility
of associative links between information, although it lacked automatic suggestion of related
information (Bush, 1945).

The first real IMAs started appearing in the 1990s and mostly focused on tracking the user’s
browsing behavior to automatically recommend interesting, new Web pages. LETIZIA was
among the first of such pro-active IMAs (Lieberman, 1995), and used a breadth-first search
strategy to follow, evaluate, and recommend outgoing links from pages in which the user
previously showed an interest. In an IMA scenario, strong user interest in a page is typically
inferred using heuristics such as a long dwell time on the page, revisiting it several times, or
saving or printing the page. Many other IMAs for recommending Web pages have been pro-
posed since then, among which the SYSKILL & WEBERT agent by Pazzani et al. (1996), which
allowed users to rate Web pages they visited. It extracted the key terms from those favorite
Web pages, and used those to generate queries to be sent to search engines. The search
results were then presented to the user as recommendations. Other examples of IMAs that
support Web browsing include LIRA by Balabanovic (1998), WEBWATCHER by Joachims et al.
(1997), WEBMATE by Chen and Sycara (1998), and the work by Chirita et al. (2006). The
GIVEALINK system by Stoilova et al. (2005) is also worth mentioning because of its similarity
to social bookmarking: GIVEALINK4 is a website that asks users to donate their bookmarks
files, effectively creating a social bookmarking website. There are some differences with
social bookmarking as we describe it in Section 2.3 though: a user’s bookmark profile in
GIVEALINK is static; a user can only update their bookmarks by re-uploading the entire
bookmarks file. Also, GIVEALINK does not support tagging of bookmarks. The bookmarks
donated by users are used in tasks such as (personalized) search and recommendation.

4http://www.givealink.org/

http://www.givealink.org/

Chapter 2. Related Work 16

In addition to Web browsing, IMAs have also been used to support other information-related
activities such as writing research papers. Budzik and Hammond (1999) designed an IMA
called WATSON that observed user interaction with a small range of everyday applications
(e.g., Netscape Navigator, Microsoft Internet Explorer, and Microsoft Word). They con-
structed queries based on keywords extracted from the documents or Web pages being
viewed or edited by the user and sent those queries to the search engines. They report that
a user study showed that 80% of the participants received at least one relevant recommen-
dation. The STUFF I’VE SEEN system designed by Dumais et al. (2003) performed a similar
function, but was specifically geared towards re-finding documents or Web pages the user
had seen before. Certain IMAs focus particularly on acting as a writing assistant that lo-
cates relevant references, such as the REMEMBRANCE AGENT by Rhodes and Maes (2000), the
PIRA system by Gruzd and Twidale (2006), and the À PROPOS project by Puerta Melguizo
et al. (2008). Finally, the well-known CITESEER5 system originally also offered personalized
reference recommendations by tracking the user’s interests using both content-based and
citation-based features (Bollacker et al., 2000).

Significant work on recommending references for research papers has also been done by
McNee (2006), who approached it as a separate recommendation task, and compared dif-
ferent classes of recommendation algorithms both through system-based evaluation and
user studies. In McNee et al. (2002), five different CF algorithms were compared on the
task of recommending research papers, with the citation graph between papers serving as
the matrix of ratings commonly used for CF. Here, the citation lists were taken from each
paper and the cited papers were represented as the ‘items’ for the citing paper. The citing
paper itself was represented as the ‘user’ in the matrix6. Citing papers could also be in-
cluded as items if they are cited themselves. McNee et al. (2002) compared two user-based
and item-based filtering algorithms with a Naive Bayes classifier and two graph-based al-
gorithms. The first graph-based algorithm ranked items on the number of co-citations with
the citations referenced by a ‘user’ paper; the other considered all papers two steps away
in the citation graph and ranked them on tf·idf-weighted term overlap between the paper
titles. They used 10-fold cross-validation to evaluate their algorithms using a rank-based
metric and found that user-based and item-based filtering performed best. In a subsequent
user study, these algorithms were also the best performers because they generated the most
novel and most relevant recommendations. A similar, smaller approach to using the citation
graph was done by Strohman et al. (2007), who only performed a system-based evaluation.
In later work, McNee et al. (2006) compared user-based filtering, a standard content-based
filtering using tf·idf-weighting, and Naive Bayes with a Probabilistic Latent Semantic Anal-
ysis algorithm. They defined four different reference recommendation subtasks: (1) filling
out reference lists, (2) maintaining awareness of a research field, (3) exploring a research
interest, and (4) finding a starting point for research (McNee et al., 2006). They evaluated
the performance of their algorithms on these four tasks and found that user-based filtering
performed best, with the content-based filtering a close second. In addition, they found that
certain algorithms are better suited for different tasks.

5http://citeseer.ist.psu.edu/
6By using the citation web in this way, and not representing real users as the the users in the ratings matrix

they were able to circumvent the cold start problem. This problem is much less pronounced when recommend-
ing for social bookmarking websites because users have already implicitly rated many items by adding them to
their personal profiles.

http://citeseer.ist.psu.edu/

Chapter 2. Related Work 17

Routing and Assigning Paper for Reviewing A task related to recommending references
is routing and assigning papers to program committee members for review. Papers are nor-
mally assigned manually to reviewers based on expertise area keywords that they entered
or knowledge of their expertise of other committee members. Dumais and Nielsen (1992)
were among the first to investigate an automatic solution to this problem of paper assign-
ment. They acquired textual representations of the submitted papers in the form of titles
and abstracts, and used Latent Semantic Indexing, a dimensionality reduction technique, to
match these against representations of the reviewers’ expertise as supplied by the reviewers
in the form of past paper abstracts. With their work, Dumais and Nielsen (1992) showed
it was possible to automate the task acceptably. Later approaches include Yarowsky and
Florian (1999), Basu et al. (2001), Ferilli et al. (2006), and Biswas and Hasan (2007). All
of them use the sets of papers written by the individual reviewers as content-based expertise
evidence for those reviewers to match them to submitted papers using a variety of differ-
ent algorithms. The most extensive work was done by Yarowsky and Florian (1999), who
performed their experiments on the papers submitted to the ACL ’99 conference. They com-
pared both content-based and citation-based evidence for allocating reviewers and found
that combining both types resulted in the best performance. However, most of the work
done in this subfield is characterized by the small size of their data sets; we refer the reader
to the references given for more information.

2.1.5 Recommendation in Context

Historically, researchers have focused on building ‘more accurate’ recommender systems,
and have equated this with ‘better liked’ and ‘more useful’ without involving the users in
this process (McNee, 2006). Indeed, the majority of the related work described so far has fo-
cused on experimental validation in a laboratory setting, with only a handful of small-scale
user studies. We stated in the previous chapter that we also take a system-based approach
to evaluation, and we will describe our reasons in more detail in Subsection 3.4.3. In the
current section, we give a short overview of the most important work on how to involve
the user in the recommendation process. It is important to establish that user satisfaction
is influenced by more than just recommendation accuracy. This was signaled by, among
others, Herlocker et al. (2004) and Adomavicius and Tuzhilin (2005). For instance, while a
good recommendation algorithm can produce personalized recommendations for each user,
the type of personalization applied by an algorithm is exactly the same across all users. This
is not beneficial to user satisfaction because not every user request for recommendations is
made in the same context. Different contexts can call for different types of personalization
and recommendation. Depending on the situation, a user might want to fulfill quite differ-
ent tasks using a recommender system, and some established algorithms have been shown
to be more appropriate for certain tasks than others (McNee et al., 2006). For instance, in
research paper recommendation filling out a reference list is rather different from the desire
to maintain awareness of a research field, requiring different recommendation algorithms.
In addition, the user’s interaction with the system and satisfaction with the results depend
on a variety of contextual factors such as the user’s intentions, his emotional state, and the
user’ confidence in the system (McNee, 2006).

Chapter 2. Related Work 18

Context in Information Seeking and Retrieval The observation is also valid in the fields
of information seeking and retrieval, where the search process is similarly influenced by
the context of the user. The relevance of the same set of returned results for two identical
queries can easily differ between search sessions because of this. In the field of information
seeking, a number of frameworks for understanding user needs and their context have been
developed. Many different theories have been proposed over the years, such as the four
stages of information need by Taylor (1968), the theory of sense-making by Dervin (1992),
the information foraging theory by Pirolli and Card (1995), and the cognitive theory of
information seeking and retrieval by Ingwersen and Järvelin (2005). Common to all of
these theories is the importance of understanding the user’s information context to increase
the relevance of the results (McNee, 2006). In this section, we zoom in on the cognitive
theory of information seeking and retrieval (IS&R) by Ingwersen and Järvelin (2005), and
describe it in the context of recommender systems. In this theory, the context of an IS&R
process is represented as a nested model of seven different contextual layers, as visualized
in Figure 2.2.

(3) session 
context

signs

(1) intra‐
object 
context

(2) inter‐object 
context

(7) historic 
contexts

(6) techno‐economic 
and societal contexts

(4) 
individual

(4‐5) social, 
systemic, 
conceptual,  
emoBonal 
contexts

(5) 
collecBve

Figure 2.2: A nested model of seven contextual layers for information seeking and retrieval
(Ingwersen and Järvelin, 2005). Revised version adopted from Ingwersen (2006).

This model allows us to classify different aspects of the recommendation process into dif-
ferent types of context. All of these seven contextual layers affect users in their interaction
with recommender systems. Below we list the seven relevant contextual layers and give
practical examples of how they could be quantified for use in experiments.

(1) Intra-object context For recommendation, the intra-object context is the item itself
and its intrinsic properties. It can cover a wide range of metadata, depending on the
type of item, such as title, author, publication venue, musical genre, director, cast, etc.
In case of items with textual content, such as research papers or Web pages, it could
also include the structures within the text. However, the structure of multimedia items
such as movies or music is more difficult to quantify.

Chapter 2. Related Work 19

(2) Inter-object context includes the relations between items, such as citations or links
between authors and documents in case of research papers. External metadata such
as movie keywords, assigned index terms, and tags can also link documents together,
as well as playlist structures that group together a set of songs.

(3) Session context involves the user-recommender interaction process and would involve
real user tests or simulations of interactions. Observing system usage patterns, such as
printing or reading time, would also be context in the case of recommending through
IMAs.

(4) Individual social, systemic, conceptual, and emotional contexts If items are linked
via a folksonomy, then this could serve as a possible source of social, conceptual, and
even emotional context to the different documents. Rating behavior, combined with
temporal information can also serve to predict, for instance, emotional context.

(5) Collective social, systemic, conceptual, and emotional contexts An important con-
textual social aspect of recommending items is finding groups of like-minded users
and similar items that have historically shown the same behavior to generate new
recommendations. Again, the folksonomy could provide aggregated social, concep-
tual, and even emotional context to the different documents.

(6) Techno-economic and societal contexts This more global form of context influences
all other lower tiers, but is hard to capture and quantify, as it is for IS&R.

(7) Historical contexts Across the other contextual layers there operates a historical con-
text that influences the recommendations. Activity logs of recommender systems
would be a appropriate way of capturing such context, possibly allowing for replaying
past recommender interaction.

Human-Recommender Interaction Neither the cognitive theory of IS&R nor the other
three theories of information seeking we mentioned earlier in this section were originally
developed for recommender systems. This means these theories are therefore not fully ap-
plicable to the field of recommender systems. McNee (2006) was the first to recognize this
lack of a user-centered, cognitive framework for recommendation and proposed a descrip-
tive theory of Human-Recommender Interaction (HRI). This singular focus on recommender
systems is a major advantage of HRI theory, although it has only been applied and verified
experimentally on one occasion.

HRI theory is meant as a common language for all stakeholders involved in the recom-
mendation process—users, designers, store owners, marketeers—to use for describing the
important elements of interaction with recommender systems (McNee, 2006). These ele-
ments are grouped into three main pillars of HRI: (1) the recommendation dialogue, (2) the
recommendation personality, and (3) the end user’s information seeking tasks. Each of these
three pillars is divided up into so-called aspects, which refer to the individual elements of
HRI. In its current form as defined by McNee (2006), HRI theory contains a total of 21
aspects. Figure 2.3 shows these 21 of HRI aspects and the three pillars they are grouped
under.

Chapter 2. Related Work 20

Recommenda)on Dialogue

Correctness

Transparancy

Saliency

Serendipity

Quan3ty

Usefulness

Spread

Usability

Recommenda)on Personality

Personaliza3on

Boldness

Adaptability

Risk taking / 
aversion

Affirma3on

Pigeonholing

Freshness
Trust / First 
impressions

End User's Informa)on 
Seeking Task

Expecta3ons of 
recommender 
usefulness

Recommender 
importance in 
mee3ng need

Recommender 
appropriateness

Concreteness 
of task

Task 
compromising

Figure 2.3: A visualization of the theory of Human-Recommender Interaction by McNee
(2006). HRI theory consists of 21 interaction aspects, organized into three pillars. Figure
taken from McNee (2006).

The aspects can be seen as the ‘words’ of the shared language that the stakeholders can use
to communicate about interaction with recommender system. HRI theory states that each
aspect can have both a system-centered and a user-centered perspective. This means that for
most aspects it is possible to devise a metric that allows the system designer to measure the
objective performance of the system on that interaction aspect. The user’s perception of how
well the recommender system performs on this aspect does not necessarily have to match
the outcome of these metrics however. Both perspectives are seen as equally important in
HRI theory.

We will briefly describe each of the three pillars and give a few examples of aspects belong
to those pillars. We refer to McNee (2006) for a more detailed description of all aspects
and the three pillars. The first pillar, recommendation dialogue, deals with the immediate
interaction between the user and the recommendation algorithm, which is cyclical in nature.
An example aspect here is transparency, which means that the user should understand (at a
high level) where a recommendation is coming from, for instance, in terms of how an item
is similar to items that the user has rated before. Greater transparency has been shown to
lead to higher acceptance of a recommender system (Herlocker et al., 2000; Tintarev and
Masthoff, 2006).

The second pillar of HRI is the recommendation personality, which covers the overall im-
pression that a user constructs of a recommender system over time. Recommender systems
are meant to ‘get to know the user’, which means users can start attributing personality
characteristics to the system. An negative example of a personality-related aspect is pigeon-
holing, where a user receives a large number of similar recommendations in a short time,
which could change the user’s perception for the worse. The item-based CF algorithm,
for instance, has shown an aptitude for getting stuck in ‘similarity wells’ of similar items
(Rashid et al., 2002). Trust is another important aspect, and is related to the “Don’t look
stupid” principle formulated by McNee et al. (2006). It states that even a single nonsense
recommendation can cause the user to lose confidence in the recommender system, even if
the other recommendations are relevant.

The last HRI pillar focuses on the end user’s information seeking task and the match with
the recommendation algorithm. An example is recommender appropriateness: not every

Chapter 2. Related Work 21

recommendation algorithm is suited to each information seeking task, as we argued before.
Music recommendation depends largely on the user’s personal taste, but more complicated
tasks could require more complicated external criteria which might be better served by
different algorithms (McNee, 2006).

2.2 Social Tagging

Under the Web 2.0 label, the past decade has seen a proliferation of social websites focusing
on facilitating communication, user-centered design, information sharing and collaboration.
Examples of successful and popular social websites include wikis, social networking services,
blogs, and websites that support content sharing, such as social bookmarking. An important
component of many of these services is social tagging; giving the users the power to describe
and categorize content for their own purposes using tags. Tags are keywords that describe
characteristics of the object they are applied to, and can be made up of one or more words.
Tags are not imposed upon users in a top-down fashion by making users choose only from a
pre-determined set of terms; instead, users are free to apply any type and any number of tags
to an object, resulting in true bottom-up classification. Users cannot make wrong choices
when deciding to apply certain tags, since their main motivation is to tag for their own
benefit: making it easier to manage their content and re-find specific items in the future.
Many other names have been proposed for social tagging, including collaborative tagging,
folk classification, ethno-classification, distributed classification, social classification, open
tagging, and free tagging (Mathes, 2004; Hammond et al., 2005). We use the term social
tagging because it is common in the literature, and because it involves the activity of labeling
objects on social websites. We do see a difference between collaborative tagging and social
tagging, and explain this in more detail in Subsection 2.2.2. Although there is no inherent
grouping or hierarchy in the tags assigned by users, some researchers have classified tags
into different categories. A popular classification is that by Golder and Huberman (2006),
who divide tags into seven categories based on the function they perform. Table 2.1 lists the
seven categories. The first four categories are extrinsic to the tagger and describe the actual
item they annotate with significant overlap between individual users. The bottom three
categories are user-intrinsic: the information they provide is relative to the user (Golder
and Huberman, 2006).

The foundations for social tagging can be said to have been laid by Goldberg et al. (1992)
in their TAPESTRY system, which allowed users to annotate documents and e-mail messages.
These annotations could range from short keywords to longer textual descriptions, and
could be shared among users. The use of social tagging as we know it now was pioneered
by Joshua Schachter when he created the social bookmarking site Delicious in Septem-
ber 2003 (Mathes, 2004). Other social websites, such as the photo sharing website Flickr,
adopted social tagging soon afterwards7. Nowadays, most social content sharing websites
support tagging in one way or another. Social tagging has been applied to many differ-
ent domains, such as bookmarks (http://www.delicious.com), photos (http://www.

7Although Delicious were the first to popularize the use of social tagging to describe content, there are earlier
examples of websites that allowed user-generated annotation of content. See Section 2.3 for some examples.

http://www.delicious.com
http://www.flickr.com
http://www.flickr.com
http://www.flickr.com
http://www.flickr.com

Chapter 2. Related Work 22

Table 2.1: A tag categorization scheme according tag function, taken directly from Golder
and Huberman (2006). The first four categories are extrinsic to the tagger; the bottom
three categories are user-intrinsic.

Function Description

Aboutness Aboutness tags identify the topic of an item, and often include
common and proper nouns. An example could be the tags crisis
and bailout for an article about the current economic crisis.

Resource type This type of tag identifies what kind of object an item is. Exam-
ples include recipe, book, and blog.

Ownership Ownership tags identify who owns or created the item. An ex-
ample would be the tags golder or huberman for the article by
Golder and Huberman (2006).

Refining categories Golder and Huberman (2006) argue that some tags do not stand
alone, but refine existing categories. Examples include years
and numbers such as 2009 or 25.

Qualities/characteristics Certain tags represent characteristics of the bookmarked items,
such as funny, inspirational, or boring.

Self-reference Self-referential tags identify content in terms of its relation to
the tagger, such as myown or mycomments.

Task organizing Items can also be tagged according to tasks they are related to.
Popular examples are toread and jobsearch.

flickr.com), videos (http://www.youtube.com), books (http://www.librarything.
com), scientific articles (http://www.citeulike.org), movies (http://www.movielens.
org), music (http://www.last.fm/), slides (http://www.slideshare.net/), news arti-
cles (http://slashdot.org/), museum collections (http://www.steve.museum/), activ-
ities (http://www.43things.com), people (http://www.consumating.com), blogs (http:
//www.technorati.com), and in enterprise settings (Farrell and Lau, 2006).

Early research into social tagging focused on comparing tagging to the traditional methods
of cataloguing by library and information science professionals. We discuss these compar-
isons in Subsection 2.2.1, and describe under what conditions social tagging and other cat-
aloging methods are the best choice. Then, in Subsection 2.2.2, we distinguish two types of
social tagging that result from the way social tagging is typically implemented on websites.
These choices can have an influence on the network structure of users, items, and tags that
emerges, and thereby on recommendation algorithms. We complete the current section in
Subsection 2.2.3 by providing some insight into the use of a social graph for representing
social tagging.

2.2.1 Indexing vs. Tagging

Early academic work on social tagging focused mostly on the contrast between social tag-
ging and other subject indexing schemes, i.e., describing a resource by index terms to in-
dicate what the resource is about. Mathes (2004) distinguishes between three different
groups that can be involved in this process: intermediaries, creators, and users. Intermedi-
ary indexing by professionals has been an integral part of the field of library and information
science since its inception. It is aimed at classifying and indexing resources by using the-
sauri or hierarchical classification systems. By using such controlled vocabularies—sets of

http://www.flickr.com
http://www.flickr.com
http://www.youtube.com
http://www.librarything.com
http://www.librarything.com
http://www.citeulike.org
http://www.movielens.org
http://www.movielens.org
http://www.last.fm/
http://www.slideshare.net/
http://slashdot.org/
http://www.steve.museum/
http://www.43things.com
http://www.consumating.com
http://www.technorati.com
http://www.technorati.com
http://en.wikipedia.org/wiki/Clay_tablet

Chapter 2. Related Work 23

pre-determined, allowed descriptive terms—indexers can first control for ambiguity by se-
lecting which terms are the preferred ones and are appropriate to the context of the intended
user, and then link synonyms to their favored variants (cf. Kipp (2006)). According to Lan-
caster (2003), indexing typically involves two steps: conceptual analysis and translation.
The conceptual analysis stage is concerned with determining the topic of a resource and
which parts are relevant to the intended users. In the translation phase, the results of the
conceptual analysis are then translated into selecting the appropriate index terms, which
can be difficult to do consistently, even between professional indexers (Lancaster, 2003;
Voß, 2007). Another problem of intermediary indexing is scalability: the explosive growth
of content means it is intractable for the relatively small group of professional indexers to
describe all content.

Index terms and keywords can also be assigned by the creators of a resource. This is com-
mon practice in the world of scientific publishing, and popular initiatives, such as the Dublin
Core Metadata Initiative8, have also been used with some success (Mathes, 2004). In gen-
eral, however, creator indexing has not received much attention (Kipp, 2006). By shifting
the annotation burden away from professional indexers to the resource creators themselves,
scalability problems can be reduced, but the lack of communication between creators of dif-
ferent resources makes it more difficult to select consistent index terms. A second problem
is that the amount and quality of creator-supplied keywords is highly dependent on the do-
main. For instance, Web pages have been shown to lack useful metadata on many occasions
(Hawking and Zobel, 2007) in the context of supporting retrieval. With social tagging the
responsibility of describing resources is placed on the shoulders of the users. This increases
scalability even further over creator indexing, as each user is made responsible for describ-
ing his own resources. It also ensures that the keywords assigned to resources by a user are
directly relevant to that user.

One of the key differences between the three different indexing schemes is the level of co-
ordination between the people doing the indexing, i.e., what terms are allowed for describ-
ing resources. Intermediary indexing requires the highest degree of coordination, whereas
social tagging requires no explicit coordination between users. The level of coordination
required for creator indexing lies somewhere in between. These differences in coordination
were confirmed by Kipp (2006), who investigated the distribution of index terms and tags
for the three different indexing methods. For a small collection of scientific articles, Kipp
(2006) compared tags, author-assigned keywords, and index terms assigned by professional
indexers. She showed that the distribution of terms of the latter two indexing approaches
was different from the tag distribution, which showed a considerably longer tail of tags that
were assigned only once. The larger variety of tags is a direct results of the lower level of co-
ordination. Her findings hinted at the presence of a power law in the tag distribution, which
was later confirmed by, among others, Shen and Wu (2005) and Catutto et al. (2007).

It is important to remark that, despite its growing popularity, social tagging is not neces-
sarily the most appropriate method of describing resources in every situation. In certain
situations, indexing by intermediaries is still the preferred approach according to Shirky
(2005). Such situations are characterized by a small, stable collection of objects with clear,

8http://dublincore.org/

http://dublincore.org/

Chapter 2. Related Work 24

formal categories. The cataloguers themselves have to be experts on the subject matter, but
users have to be experts in using the classification system as well. Examples of such collec-
tions include library collections or the periodic table of elements. In contrast, social tagging
works best for large, dynamic, heterogeneous corpora where users cannot be expected to
gain expertise in a coordinated classification scheme (Shirky, 2005). The World Wide Web
is a good example of such a scenario with billions of Web pages that vary wildly in topic and
quality.

2.2.2 Broad vs. Narrow Folksonomies

The aggregation of the tagging efforts of all users is commonly referred to as a folksonomy,
a portmanteau of ‘folk’ and ‘taxonomy’, implying a classification scheme made by a group
of users. Like the hierarchical classification schemes designed by professional indexers to
organize knowledge, a folksonomy allows any user to navigate freely between items, tags,
and other users. The term was coined by Vander Wal (2005b), who defines a folksonomy
as the result of “personal free tagging of information and objects (anything with a URL) for
one’s own retrieval”. Different variations on this definition have been proposed in the past.
In some definitions, only tags that are assigned by a user for his own benefit as considered
to be a part of the folksonomy. Consequently, tagging for the benefit of others is excluded
from the folksonomy according to this definition (Lawley, 2006). We refer the reader to
Chopin (2007) for an extensive overview and discussion of the different definitions. For
the recommendation experiments described in this thesis, we do not take into account the
different motivations that users might have when tagging items. We define a folksonomy
as “an aggregated network of users, items, and tags from a single system supporting social
tagging”. Vander Wal (2005a) distinguishes between two types of folksonomies, depend-
ing on how social tagging is implemented on the website: broad folksonomies and narrow
folksonomies. Figure 2.4 illustrates these two types of folksonomies.

The essential difference between a broad and a narrow folksonomy is who is allowed to
tag a resource: every user interested in the resource, or only the creator of the resource.
This dichotomy is caused by the nature of the resources being tagged in the system. Broad
folksonomies emerge in social tagging scenarios where the resources being tagged are pub-
licly available, and were not necessarily created by the people who tagged and added them.
A good example are Web page bookmarks: any user can bookmark a Web page and many
pages will be useful to more than one user. More often than not, the bookmarked Web
pages were not created by the user who added them to his profile. This means that inter-
ested users will add their own version of the bookmarked URL with their own metadata
and tags. Figure 2.4(a) illustrates this case for a single example resource. The ‘initiator’,
the first user to add the resource to the system, has tagged the resource with tags A and C
when he added it to the system. Users in group 1 added the post with tags A and B, group 2
with tags A and C, and group 3 with tags C and D. Notice that tags B and D were not added
by the original creator, although it is possible that the initiator later retrieves the resource
with tag D. The two users in group 4 never add the resource, but find it using tags B and
D later. Figure 2.4(a) illustrates the collaborative nature of tagging the resource: a tag can

Chapter 2. Related Work 25

TAGS

RESOURCE

INITIATOR

A

B

D

1

2

3

4

C

(a) Broad folksonomy

TAGS

RESOURCE

CREATOR

A

B

C

1

2

3

4

(b) Narrow folksonomy

Figure 2.4: Two types of folksonomies: broad and narrow. The figure is slightly adapted
from Vander Wal (2005a). The four user groups on the right side of each figure denote
groups of users that share the same vocabulary. An arrow pointing from a user (group)
to a tag means that the tag was added by that user (group). An arrow pointing from a
tag to a user (group) means that the tag is part of the vocabulary of that user (group) for
retrieving the resource. The creator/initiator is the user who was the first to create or add
the resource to the system.

be applied multiple times to the same resource. This is why we refer to this scenario as
collaborative tagging.

In contrast, a narrow folksonomy, as illustrated in Figure 2.4(b), emerges when only the
creator of a resource can tag the item. For example, in the case of the video sharing website
YouTube, a user can create a video and upload it to the website. This user is the original
creator of the video and adds tags A, B, and C to the video to describe it after uploading. As
a consequence, each tag is applied only once to a specific resource in a narrow folksonomy.
We therefore refer to this scenario as individual tagging. All other users are dependent on
the creator’s vocabulary in a narrow folksonomy: users in group 1 can use tag A to locate
the resource, users in group 2 may use tags A and B, and group 4 users may use tag C. User
3, however, cannot find the resource because his vocabulary does not overlap with that of
the creator. In this thesis we look at recommendation of bookmarks and scientific articles.
These items are typically added and tagged by many different users, and result in broad
folksonomies. We do not focus on recommendation for individual tagging systems, only for
collaborative tagging.

2.2.3 The Social Graph

Figure 2.4 illustrates the concept of a folksonomy for a single item, but this mini-scenario
occurs for many different items on websites that support social tagging. With its myriad of
connections between users, items, and tags, a folksonomy is most commonly represented
as a undirected tripartite graph. Mika (2005) and Lambiotte and Ausloos (2006) were the
first to do so. Figure 2.5 illustrates such a social graph.

Chapter 2. Related Work 26

ITEM

USER

TAG

Figure 2.5: Visualization of the social graph as an undirected tripartite graph of users,
items, and tags.

We take the tripartite graph as the basis for our experiments in Chapter 4. It is important
to note, however, that the three different types of nodes in the graph—users, items, and
tags—do not all have the same roles. Users are active participants in the graph: they add
items and label them with tags. Items and tags are passive nodes and can be seen as content
bearers. A fitting metaphor here is that of the user as a predator, snaring items as his prey
using tags. This implies that is possible to represent the folksonomy in a different type of
graph representation with directed edges, although we do not consider this in the thesis due
to temporal restrictions.

2.3 Social Bookmarking

As mentioned earlier, the Web 2.0 phenomenon caused a shift in information access and
creation from local and solitary, to global and collaborative. Social bookmarking websites
are a prime example of this: instead of keeping a local copy of pointers to favorite Web
pages, users can instead store and access their bookmarks online through a Web interface
on a remote Web server, accessible from anywhere. The underlying application then makes
all stored information shareable among users. In addition to this functionality, most social
bookmarking services also enable social tagging for their users, in addition to standard
metadata such as the title and a brief description of the bookmarked Web page.

The current generation of social bookmarking websites is not the first. One of the original
online bookmarking services was the now defunct itList, which was originally created in
April 1996 (De Nie, 1999). It allowed users to store and organize their bookmarks online
and, if they chose to do so, share them with other users. itList also enabled users to sort their
bookmarks using a variety of categories, although it did not allow for free categorization. In
the years that followed, several competing services were launched, such as Backflip, Blink,
ClickMarks, and HotLink, each attempting to offer unique features to attract users (Lawlor,

Chapter 2. Related Work 27

2000). For instance, ClickMarks offered automatic categorization to sort bookmarks into
folders. None of these services survived the bursting of the ‘dot-com’ bubble. The sec-
ond wave of social bookmarking services started in September 2003 with the creation of
Delicious by Joshua Schachter (Mathes, 2004). The instant popularity of Delicious led to
the launch of many other Web 2.0-style social bookmarking services, such as Diigo, Simpy,
Ma.gnolia and Mister Wong9. The main differences between the two waves of social book-
marking services are a stronger emphasis on sharing one’s bookmarks with other users. and
the addition of social tagging, as pioneered by Delicious. Some social bookmarking services,
however, only allow users to share bookmarks without any support for social tagging, such
as the GiveALink service (Stoilova et al., 2005) and StumbleUpon10.

Below we describe domains fit for social bookmarking (Subsection 2.3.1), and how users
commonly interact with a social bookmarking system (Subsection 2.3.2). We conclude the
section and this chapter in Subsection 2.3.3 by giving an overview of the three research
tasks that have received the majority of the attention in the related work.

2.3.1 Domains

So far we have defined social bookmarking services as websites that focus on the book-
marking of Web pages. In addition to Web bookmarks, there are three other domains for
social ‘storage’ services that are worth mentioning. We already mentioned that some so-
cial bookmarking websites operate in the domain of scientific articles and research papers.
These services are known as social reference managers or social citation managers. They al-
low users to store, organize, describe, and manage their collection of scientific references.
Although more general-purpose websites like Delicious could conceivably be used for this
as well, social reference managers offer specialized features, such as article-specific meta-
data, creating reading lists, reading priorities, and export facilities for different formats
such as BibTeX, RIS, and EndNote. Examples of social reference managers include CiteUlike
(http://www.citeulike.org/), Connotea (http://www.connotea.org/), BibSonomy
(http://www.bibsonomy.org), and refbase (http://www.refbase.org/), the first three
of which all support collaborative tagging.

Next to the domains mentioned above, a fourth third domain for social information storage
and management is books. Social cataloging services allow users to store, describe, and
manage books that they own or have read. Typically, social cataloging services allow users
to rate books, and to tag and review them for their own benefit and the benefit of other
users. They typically also use identifiers such as ISBN or ISSN numbers to automatically
retrieve the book metadata from centralized repositories such as the Library of Congress
or Amazon. Examples include LibraryThing (http://www.librarything.com/), Shelfari
(http://www.shelfari.com/), aNobii (http://www.anobii.com/), GoodReads (http:
//www.goodreads.com/), and WeRead (http://weread.com/). The first three support
collaborative tagging.

9We refer the reader to http://en.wikipedia.org/wiki/List_of_social_bookmarking_websites for
an up-to-date list of social bookmarking services.

10http://www.stumbleupon.com/

http://www.citeulike.org/
http://www.connotea.org/
http://www.bibsonomy.org
http://www.refbase.org/
http://www.librarything.com/
http://www.shelfari.com/
http://www.anobii.com/
http://www.goodreads.com/
http://www.goodreads.com/
http://weread.com/
http://en.wikipedia.org/wiki/List_of_social_bookmarking_websites
http://www.stumbleupon.com/

Chapter 2. Related Work 28

The fourth example of collaborative information sharing services are formed by the so-called
social news websites, that allow users to share and discover any kind of online content, but
with an emphasis on online news articles. After a link or news story has been submitted, all
website users get to vote and comment on the submissions, and stories are ranked on these
reactions. Only stories with the most votes appear on the front page. The most popular
social news websites are Digg (http://www.digg.com/), Reddit (http://www.reddit.
com/), Fark (http://www.fark.com/), and Mixx (http://www.mixx.com/).

2.3.2 Interacting with Social Bookmarking Websites

How can users typically interact with a social bookmarking website? Because of the public,
shared nature of Web pages, social bookmarking websites allow for collaborative tagging.
The broad folksonomy that emerges from this results in a rich network of connections be-
tween users, items, and tags, which is reflected in the navigational structure. Figure 2.6
shows the typical navigating and browsing structure of a social bookmarking website; we
take the popular service Delicious as our example.

The personal profile page is the starting point for every user (top left in Figure 2.6). It lists
the assigned tags and metadata for every bookmark that a user has added. In addition,
each item and tag on the page is linked to a separate page that chronologically show the
activity of those tags and items. For a selected tag, clicking on it leads the user to a page that
shows all other items in the system that have been annotated with that tag (bottom left).
The popularity of the bookmarked item on Delicious is shown for each post. When a user
clicks on this, they are forwarded to the item’s history page (bottom right), which show all
other users who have added the selected item. For each post of that item, it also lists what
tags and metadata were assigned to it by which other user. Another typical feature of social
bookmarking—and websites supporting social tagging in general—is a visual representation
of all of a user’s tags, known as a tag cloud (top right). In a tag cloud, tags are sorted
alphabetically and the popularity of a tag (or rather usage intensity) is denoted by varying
the markup of the link: larger font sizes and/or darker font colors tend to denote more
popular tags.

Some social bookmarking websites offer extra features on top of this: Diigo11, for instance,
also allows its users to highlight the Web pages they bookmark and add notes to them,
which are stored in the system and overlaid on the bookmarked Web pages when the user
revisits them. Faves12 is unique in being the only social bookmarking website to allow its
users to explicitly rate the items they have added on a five-point scale. Social cataloging
applications like LibraryThing and Shelfari also allow explicit ratings. It is interesting to
note, however, that some users find a way around the absence of such features. On Delicious,
for example, tags such as *, ***, or ***** are used by several people to represent the quality
of a bookmarked Web page.

11http://www.diigo.com/
12http://www.faves.com/

http://www.digg.com/
http://www.reddit.com/
http://www.reddit.com/
http://www.fark.com/
http://www.mixx.com/
http://www.diigo.com/
http://www.faves.com/

Chapter 2. Related Work 29

TAG CLOUD 
NAVIGATION

ITEM 
HISTORY

TAG HISTORY

Figure 2.6: Navigation on a social bookmarking website. The starting point for every user
is their profile page which lists the bookmarks they added to their profile (top left). From
there, users can browse to tag pages (bottom left) which show which other bookmarks
have been tagged with the selected tag; and to item history pages (bottom right), which
show all other users who have added the selected item, and what tags and metadata they
assigned to it. Users can also get an overview of the tags they have used from their tag
cloud view (top right), which marks up the more popular tags with a darker font color and
a larger font size.

2.3.3 Research tasks

We mentioned earlier that there is not a large body of related work on the task of item
recommendation on social bookmarking websites. In this section we briefly discuss the tasks
and problems that have seen more attention: browsing, search, and tag recommendation13.

Browsing One of the strengths of social tagging as a way of categorizing and describing
resources is that users are free to tag without any considerations of relationships between

13These are not the only possible tasks that can be supported on social bookmarking websites; we refer the
reader to Clements (2007) for an insightful overview.

Chapter 2. Related Work 30

tags. However, it is obvious that certain tags will be more related to each other than others,
because they are synonyms, hyponyms, or because there is another kind of conceptual rela-
tionship between them. Several researchers have proposed techniques that could improve
the browsing experience. One example is automatically deducing a tag hierarchy for im-
proved browsing as proposed by Heymann and Garcia-Molina (2006) and Li et al. (2007).
A second way of improving the browsing experience is by clustering related bookmarks to-
gether, as proposed by Capocci and Caldarelli (2007) and Clements et al. (2008b). Tag
clouds do not take such implicit relationships into account and just visualize tags in an al-
phabetical list, highlighted according to popularity. Garama and De Man (2008) performed
an extensive user study to investigate the usefulness of tag clouds for image search. They
compared tag clouds as a browsing mechanism to a standard search engine for a known-
item retrieval task, and found that, although performance as measured by success rate is
higher when using a search engine, users are more satisfied when browsing by using the
tag cloud than when using a search engine. This shows the value of a simple representation
such as the tag cloud.

Search A second popular research problem in social bookmarking is whether tags can be
used to improve (1) retrieval of items on a social bookmarking website and (2) Web search
in general. Since tags are condensed descriptions of content, it is possible that they can
replace or augment standard retrieval algorithms; this possibility was already hypothesized
early on by, for instance, Mathes (2004). Heymann et al. (2008a) tried to answer the ques-
tion Can social bookmarking help Web search? by analyzing various properties of Delicious14.
Heymann et al. (2008a) found that Web pages posted to Delicious tend to be quite dynamic
and updated frequently. An analysis of the tags showed that they were overwhelmingly
relevant and objective. However, compared to the Web, Delicious still only produces small
amounts of data, limiting its possible impact on improving Web search. The tags themselves
were found to occur in over half of the pages they annotate, and in 80% of the cases they
occurred in either the page text, the bookmark title or the Web page URL. Heymann et al.
(2008a) therefore concluded that it is unlikely that tags will be more useful than a full text
search emphasizing page titles, and that Web search engine performance is therefore un-
likely to be impacted. Bischoff et al. (2008) repeated the work of Heymann et al. (2008a)
for two more social bookmarking systems, Flickr and Last.fm, and were more positive about
the potential for tags. They report a higher percentage of uniqueness of tags compared to
anchor and page text, especially in the music domain, where content analysis is more diffi-
cult. They conclude that for certain domains tags can have a large impact on search engine
performance. Morrison (2007) directly compared the performance of social bookmarking
websites with Web search engines and Web directories. He found that there was only a
small overlap in the results of each type of retrieval ‘tool’, with 90% of the results being
unique to the system that retrieved them. The largest of the social bookmarking websites
performed significantly better than the Web directories. Social bookmarking websites were
also better than search engines on dynamic queries such as current events, which confirms
the findings of Heymann et al. (2008a).

14A year earlier, Yanbe et al. (2007) performed the same kind of analysis on Japanese social bookmarking
websites and came to similar conclusions.

Chapter 2. Related Work 31

Several approaches have been proposed for how tags can be incorporated into retrieval al-
gorithms. Bao et al. (2007) proposed an algorithm based on PageRank (Page et al., 1998)
called SocialPageRank to measure the static ranking of a Web page based on the tags as-
signed to it instead of the hyperlinks between pages. They combined it with a simple vector
space model to perform Web page retrieval and showed that re-ranking the search results
yielded significant improvements over their document retrieval baseline. Zhou et al. (2008)
proposed a unified framework that combines the modeling of tag usage with a language
modeling approach to IR by enhancing the document and query language models with
the tags. Their experiments on a sample of the Delicious website showed significant im-
provements over a traditional retrieval algorithm. Similar experiments were performed by
Carman et al. (2008), who used a similar algorithm to construct probabilistic user profiles
to combine with regular document retrieval. In addition, they compared creating (1) user
profiles based on tags and (2) profiles based on the content of the bookmarked pages, and
showed that a combination performed best.

Tag recommendation The most popular recommendation task in the literature on social
bookmarking so far has been tag recommendation: suggesting appropriate tags to a user
when he posts a new bookmark to the system. For instance, the BibSonomy system includes
a tag recommender that offers up to ten recommended tags when a user finds an interesting
Web page or publication and posts it to BibSonomy. The experiments behind this tag recom-
mendation are described in Jäschke et al. (2007b). They found that a graph-based approach
to tag recommendation significantly outperformed collaborative filtering approaches. Col-
laborative filtering was first applied to the problem of recommending tags in 2006 by Xu
et al. (2006). Sigurbjörnsson and Van Zwol (2008) aggregated tag occurrence information
in different ways to recommend tags for photos on Flickr. Heymann et al. (2008b) exper-
imented with tag prediction by mining tag-based association rules on Delicious using their
Stanford Tag Crawl data set from Heymann et al. (2008a). Song et al. (2008) used a com-
bination of graph partitioning and a two-way Poisson mixture model to cluster tags into
separate clusters with good results on their two data sets based on Delicious and CiteULike.
Chirita et al. (2007) proposed a tag recommender that mined the bookmarked Web pages
and pages similar to it by ranking the terms in those documents by their tf·idf value and
recommending the top N terms. Blogs are an additional area where tag prediction has been
applied to blog posts by Mishne and de Rijke (2006). For each untagged blog post, they
first locate similar blog posts using a retrieval system and then assign the most popular tags
associated with those best-matching posts to the untagged post (Mishne, 2006).

As a final note, it is worthwhile to ask the question whether these tag recommendations are
actually accepted by the user, and what the effects are on the system? Do people converge
to a single vocabulary by accepting the suggestions of the tag recommender, or are they
stubborn and do they stick to their own choice of tags? Suchanek et al. (2008) examined
the influence that these tag recommendations can have on a social bookmarking system
and its folksonomy. They found that up to one in three tags are applied purely because of
the presence of the tag suggestions. This implies that the distribution of tag popularity in
a folksonomy might become biased as a result of offering tag suggestions. However, tag
suggestions do provide a form of control over the tag vocabulary of the users.

I
RECOMMENDING BOOKMARKS

In Chapter 1, we described two important characteristics of social bookmarking systems.
The first was the presence of the folksonomy, a collaboratively generated categorization
of items in a system by its users. This extra annotation layer of collaboratively generated
tags binds the users and items of a system together. The second observation about social
bookmarking systems is that, in addition to tags, they contain a large amount of additional
metadata describing the content of those systems and its users. In the first part of this thesis,
we will investigate how to exploit these two characteristics, both separately and combined,
to provide the best possible recommendations for users of social bookmarking systems. This
leads us to our first three research questions.

RQ 1 How can we use the information represented by the folksonomy to sup-
port and improve the recommendation performance?

RQ 2 How can we use the item metadata available in social bookmarking sys-
tems to provide accurate recommendations to users?

RQ 3 Can we improve performance by combining the recommendations gen-
erated by different algorithms?

Part I is organized as follows. We begin in Chapter 3, where we present the building blocks
of our quantitative experimental evaluation. We formally define our recommendation task,
and introduce our data sets. We discuss the filtering we applied to the data, our experi-
mental setup, and discuss the evaluation metrics we use. We also critically discuss the pros
and cons of our methodological decisions. In Chapter 4, we propose and compare different
options for using the folksonomy for item recommendation on social bookmarking websites
(RQ 1). Chapter 5 examines how we can use the metadata present in social bookmarking
systems to improve recommendation performance (RQ 2). Chapter 6 concludes Part I and
investigates if we can improve upon our best-performing algorithms from Chapters 4 and
5 by combining the output of the different algorithms into a new list of recommendations
(RQ 3).

33

C
H

A
P

T
E

R 3
BUILDING BLOCKS FOR THE EXPERIMENTS

In Chapter 1 we introduced two features of social bookmarking systems that we believe have
the potential to improve recommendation: (1) the folksonomy, serving as an extra layer of
information that binds users and items together, and (2) the presence of metadata. In or-
der to evaluate the usefulness of different recommender algorithms for social bookmarking
services and to determine how best to incorporate these extra sources of information, we
need a proper framework for experimentation and evaluation. While we recognize that rec-
ommendation accuracy alone does not guarantee users a satisfying experience, we focus on
a quantitative, system-based evaluation of recommender system performance in this thesis.
It is possible to simulate, to a satisfying degree, the reaction of the user to different variants
of the recommender algorithms and thus determine which algorithms are better suited to
which domains (Herlocker et al., 2004). This can be done automatically without any user
intervention.

In this chapter we will describe the building blocks for our experiments and their evalua-
tion. First, we need to understand the type of user task we are trying to fulfill with our
recommender system, as the rest of the experimental evaluation depends on the choice of
recommendation task. Section 3.1 gives an overview of six possible item recommendation
tasks and explains which recommendation task we focus on in this thesis. Section 3.2 then
describes the four data sets we collected from BibSonomy, CiteULike, and Delicious to eval-
uate our recommendation algorithms. Section 3.3 describes how we represent our data. We
conclude this chapter by describing our experimental setup and evaluation for our specific
item recommendation task in Section 3.4.

3.1 Recommender Tasks

A prerequisite of the entire experimental evaluation process is deciding which recommender
task we want to support. The choice of data sets, experimental setup, and evaluation met-
rics all depend on which specific recommender task we select. Recommender systems can
fulfill different tasks for different stakeholders (Herlocker et al., 2004). First and foremost

35

Chapter 3. Building Blocks for the Experiments 36

among these stakeholders are the end users, who should be provided with novel and inter-
esting recommended items. However, recommender systems can also be designed, tweaked,
or tuned to serve the goals of other system stakeholders. Marketers may want the recom-
mender system to promote new albums or artists for a certain period of time, while other
stakeholders such as store owners may wish to recommend excess inventory items. Her-
locker et al. (2004) identify six different user tasks for which recommender systems can be
used. In this section we describe these six tasks and explain which one is applicable for our
scenario of recommendation for social bookmarking.

Annotation in Context In the Annotation in Context task, the recommender system gener-
ates its suggestions in context, helping the user to make decisions. An example would
be an IMA that aids a user during the writing process, recommending relevant liter-
ature depending on the user’s task and the content of the document being written
(Puerta Melguizo et al., 2008). We do not focus on this user task in this thesis.

Find Good Items In many systems users are provided with a ranked list of recommended
items, often without the predicted scores or ratings, such as in Web search engines.
In such a situation it might be best for a system to generate a few highly useful rec-
ommendations even at the cost of being wrong about the others. Presenting the user
with a list of top items1—the ‘best guesses’ made by the system—is the most useful
scenario we envision for recommendation for social bookmarking services, and the
one we will address in this thesis. We will try to recommend the best, novel items for
a user based on the bookmarks or scientific articles that user has added to his profile
in the past.

Find All Good Items In special cases of the Find Good Items task, coverage can be essential,
such as in legal search engines or patent search. Here it is important to optimize
on recall and find all the good items in the collection. Although it depends on the
situation and the type of social bookmarking service, we do not believe that finding
all good items is essential for our recommendation experiments.

Recommend Sequence In this task the goal is to predict a useful or interesting sequence
of recommended items over time. Ordering is of much greater importance for this
user task. Examples include generating smooth music playlists that prevent the so-
called iPod whiplash phenomenon, where the listener is confronted with clashing
transitions from one musical genre to a completely unrelated one. A second example
would be creating reading lists meant to familiarize researchers with a certain field
(“First read this introduction, then that survey, ...”). In this thesis we do not focus on
this recommendation task.

Just Browsing Sometimes it is rewarding for users to browse around a website and ex-
plore the recommendations without an ulterior motive. On social bookmarking web-
sites, the folksonomy connecting users and items through tags can enhance the user’s
browsing experience greatly and increase the possibility of serendipitous findings. In
these browsing scenarios, the quality of the user interface is usually deemed more im-
portant than recommendation accuracy. This task is related to the recommendation

1Also known as Top-N recommendation.

Chapter 3. Building Blocks for the Experiments 37

dialogue aspects of human-recommender interaction we discussed in Section 2.1.5.
We do not focus on this user task in this thesis.

Find Credible Recommender In this user task, users tend to play around with the rec-
ommender system specifically to see if it will correctly learn their personal prefer-
ences and generate trustworthy and credible recommendations. This task is related
to the recommendation personality aspects of human-recommender interaction we
discussed in Section 2.1.5. This user task is not applicable in our situation either.

3.2 Data Sets

In the previous section we selected the Find Good Items task as the item recommendation
task we wish to address in this thesis. The next step in our quantitative evaluation is collect-
ing data sets that we can use to evaluate the recommendation algorithms we will design to
address this recommender task. In this section we discuss three important issues for collect-
ing such realistic data sets. We look at the field of IR, and adapt three common guidelines
for constructing IR data sets for our own purposes. We describe the four data sets we have
collected and list statistics of the raw, unfiltered versions of these data sets. Then, in Sub-
sections 3.2.1 through 3.2.3 we discuss the specifics of how these data sets were collected
and of the social bookmarking websites they originate from.

In order to test our algorithms, we need to use data sets that are realistic representations of
the daily operation of a social bookmarking website. There are three important issues that
surface when deciding how to evaluate recommendation in a social bookmarking situation.

Difficult to generalize Using a data set collected from one particular social bookmarking
service does not necessarily mean that any findings are generalizable to all social
bookmarking services available on the Web. Certain domains might very well have
different demands and characteristics that make it hard or even impossible to apply
the findings of our experiments there. To counter this, one should always work with a
reasonable abstraction of a realistic task and as many different, yet realistic data sets
as possible. This way we can obtain an estimate of how well results and conclusions
carry over to other social bookmarking settings.

Personal judgments and interestingness Relevance in IR is not quite the same as the no-
tions of relevance or interestingness in recommendation. Whereas personal judgments
from the user can be substituted by judgments from impartial, third-party judges to a
certain extent in the field of IR, there is no evidence that this is the same for recom-
mender systems.

Private vs. public data Many social bookmarking websites, such as Delicious and CiteULike,
allow its users to keep part or all of their bookmarked items private. Harvesting a data
set from the public-facing side of a social bookmarking website therefore means that
not necessarily all data is available for testing.

Chapter 3. Building Blocks for the Experiments 38

To address the first issue of generalizability, we introduce and use four different data sets
from two different domains: scientific articles and Web bookmarks. This will enable to com-
pare our algorithms under different conditions and determine if our findings carry over to
other websites and domains. Our four different data sets were taken from three different
social bookmarking websites: BibSonomy, CiteULike, and Delicious. One of the websites,
BibSonomy, supplies two data sets as it allows its users to post both scientific articles and
Web bookmarks to their profiles. We therefore split the BibSonomy data into a data set
containing only scientific articles and a data set containing only Web bookmarks. In the re-
mainder of this thesis, we will refer to the BibSonomy data sets containing scientific articles
and Web bookmarks as BibArt and BibBoo respectively to avoid confusion. The website
CiteULike also covers scientific articles while Delicious covers Web bookmarks. This means
we have two data sets corresponding to the domain of scientific articles (BibSonomy and
CiteULike), and two covering the domain of Web bookmarks (BibSonomy and CiteULike).
With two pairs of data sets sharing the same domain, we can directly examine and compare
if the findings from one data set are generalizable to other social bookmarking websites in
the same domain or in a different domain altogether.

With regard to the second issue of the difference between relevance and interestingness, the
fundamental differences and similarities between these two notions are not covered in this
thesis. We therefore abstract away from this and treat relevance the same as interestingness.
Extensive user evaluations, such as those performed by McNee (2006) could shed more light
on this difference. However, this is beyond the scope of this thesis.

We do not believe the third issue to have a large influence on our experimental setup and
results. Although we have no way of knowing how substantial a part of the social book-
marking website’s database is missing from collecting a crawl of the public-facing section,
we do not believe this data to be radically different in either structure or topic. Moreover,
public bookmarks are likely to comprise links to personal log-in pages that would not make
for suitable recommendations to other users at any rate. This means we assume any conclu-
sions drawn from our experiments on the public-facing sides of social bookmarking websites
to carry over to the private part without any problems.

Constructing Proper Data Sets for Recommendation As far as we know, Herlocker et al.
(2004) are the only ones to have explicitly discussed the challenges of creating and using
data sets specifically for testing recommender algorithms. They stress that it is “very impor-
tant that the tasks your algorithm is designed to support are similar to the tasks supported
by the system from which the data was collected” (Herlocker et al., 2004, p. 15). An exam-
ple would be the MovieLens2 movie recommender system, which offers support for the Find
Good Items user task. This means that the recommender system tends to show those items
it is most confident about, subsequently resulting in more ratings for these good and often
more popular movies. As a consequence of this “rich get richer” effect, the MovieLens data
set is less likely to have many ratings for the more unpopular movies. Using this data set
to evaluate a different task, such as Recommend Sequence or Annotation in Context would
therefore be inappropriate (Herlocker et al., 2004). Hardly any social bookmarking services
offer item recommendation to their users at this point and certainly no data sets based on

2http://www.movielens.org/

http://www.movielens.org/

Chapter 3. Building Blocks for the Experiments 39

these recommender systems have been made available yet3, so this could not be taken into
account when gathering our data sets.

IR and recommendation are considerably similar in many aspects, such as the construc-
tion of test collections for IR and the construction of good data sets for recommendation.
According to Croft et al. (2009), there are three important guidelines when creating test
collections for IR experiments. We have adapted them to recommendation purposes and list
them here.

Guideline 1 It is important to use a collection that is representative of the application in
terms of the number, size, and type of resources. This echoes the point made when
describing the first issue in the beginning of this section: a good data set is a realistic
representation of actual content present in a social bookmarking service.

Guideline 2 Queries should be representative of the real-world application. In our rec-
ommendation scenario, queries correspond to the user profiles present on the social
bookmarking website—a single user profile is matched against the entire database just
as single queries are matched against the document collection. We therefore recom-
mend collecting a realistic and sufficiently large set of user profiles in order to create
a good recommendation data set.

Guideline 3 Relevance judgments should be created by people who posed the queries or
independent judges. This guideline is especially strict in the case of recommender data
sets: judging whether an item is interesting or not is an strictly personal matter, and
cannot be done by third parties on behalf of the user for whom the recommendation
was made.

With regard to the third guideline, it is necessary to remark that it is impossible to have
a complete set of user–item judgments. Having each user judge all the items on a social
bookmarking website is simply not achievable. This is similar to IR evaluation, where it
is practically impossible to judge all query-document pairs for topical relevance. However,
according to Carterette et al. (2006), it is better for the quality of the evaluation to judge
more queries than to judge more documents. If a small number of queries are used, the
results should only be considered indicative rather than conclusive. Since all of our data
sets contain thousands of users profiles that serve as our queries, we hope that—analogous
to the findings of Carterette et al.—having many different users profiles instead of more
judged user–item pairs mitigates the issue of lacking human judgments to a certain extent.

Collecting the Data Sets The field of IR has benefited greatly from the large-scale eval-
uation initiatives such as the Text REtrieval Conference (TREC)4. TREC is comprised of
different research tracks, with each track focusing on a specific sub-problem of IR, such as
Web search, blog search, or entity retrieval. Each tracks works with shared data sets of
realistic size that enable the participants to compare their approaches with each other.

3Of course it is entirely possible that a user added bookmarks to, say, his Delicious account because he or she
saw them on the Recent or Popular lists, but we have no way of knowing why a user added a specific bookmark.

4Available at http://trec.nist.gov/.

http://trec.nist.gov/

Chapter 3. Building Blocks for the Experiments 40

Unlike these large-scale initiatives for IR, however, there were no publicly available data
sets of social bookmarking websites when the work described in this thesis was started.
We therefore had to collect the CiteULike and Delicious data sets ourselves. In addition,
the BibSonomy collection was added when it became available in May 2008 as part of the
2008 ECML/PKDD Discovery Challenge. We understand that the quality of any scientific
experiment is dependent on the possibility of verification and comparison of the results. We
therefore make these data sets publicly available to the recommender systems community5.
For each data set, we removed the spam content from our crawls wherever possible, as spam
users and content will only serve to disturb our recommendation experiments.

Table 3.1 lists some of the basic statistics of the raw, unfiltered data sets we collected. For
each of the four data sets, we list the size in terms of users, items, tags, and posts. In
addition, we show the average and maximum counts of the relationships of one object type
to another. For instance, the average number of tags per user for CiteULike is equal to
27.2, while the maximum numbers of users that share an item in Delicious is 764 in our
raw Delicious data set. We do not list minimum counts for any of the calculated measures,
because they are always equal to 0 or 1, depending on the measure. We also list information
about the sparsity of each of the data sets.

Table 3.1: Statistics of the four different data sets used as the basis for our experiments.

bookmarks articles
BibSonomy Delicious BibSonomy CiteULike

users 1,913 17,975 1,310 18,072
items 157,304 3,870,535 136,890 585,351
tags 44,194 554,856 27,702 129,409
posts 177,334 5,975,514 156,124 672,396
avg. # items per user 92.7 332.4 119.2 37.2
avg. # users per item 1.1 1.5 1.1 1.1
avg. # tags per user 59.1 238.7 43.9 27.2
avg. # users per tag 2.5 7.1 2.1 3.3
avg. # tags per item 3.6 3.7 1.9 3.3
avg. # items per tag 12.6 24.6 9.5 13.7
max # items per user 33,381 15,044 57,739 6,581
max # users per item 54 764 45 546
max # tags per user 11,165 6,771 4,767 4,045
max # users per tag 257 8,974 490 1,399
max # tags per item 101 548 143 1,282
max # items per tag 35,561 121,274 65,923 150,979
% users without tags 0 7.57 0 14.22
% items without tags 0 6.01 0.16 8.40
% posts without tags 0 6.00 0.19 9.23
user-item sparsity (%) 99.9411 99.9914 99.9129 99.9936

The origins of our four data sets are described in greater detail in Subsections 3.2.1 through
3.2.3. We briefly describe the spam problem for each of the data sets in those sections. In
Chapter 7 we examine the presence of spam in our social bookmarking data sets in more
detail, and we investigate the influence on recommendation performance.

5The data sets are available from http://ilk.uvt.nl/~toine/phd-thesis/.

http://ilk.uvt.nl/~toine/phd-thesis/

Chapter 3. Building Blocks for the Experiments 41

3.2.1 CiteULike

CiteULike is a social bookmarking service that offers a “a free service to help you to store,
organise, and share the scholarly papers you are reading”6. It allows its users to add their
academic reference library to their online profiles on the CiteULike website. CiteULike
was created in November 2004 by Richard Cameron and contains over 1.5 million unique
articles7, annotated by more than 46,000 users with over 307,000 unique tags at the time
of writing. Articles can be stored with their metadata (in various formats), abstracts, and
links to the papers at the publishers’ sites. In addition, users can add reading priorities,
personal comments, and tags to their papers. CiteULike also offers the possibility of users
setting up and joining groups that connect users sharing academic or topical interests. These
group pages report on recent activity, and offer the possibility of maintaining discussion fora
or blogs. The full text of articles is not accessible from CiteULike, although personal PDF
versions can be uploaded, which are then only accessible to the uploading user. Figure 3.1
shows a screenshot of a user’s profile page in CiteULike.

Figure 3.1: Screenshot of a user’s profile page in CiteULike.

CiteULike offers daily dumps of their core database to benefit researchers wishing to analyze
or experiment with the data8. We used the dump of November 2, 2007 as the basis for our
experiments. A dump contains all information on which articles were posted by whom,
with which tags, and at what point in time. Each line represents a user-item-tag triple with

6http://www.citeulike.org
7When we refer to items as articles, we mean not just journal articles, but also conference papers, theses,

technical reports, books, and so on.
8Available from http://www.citeulike.org/faq/data.adp.

http://www.citeulike.org
http://www.citeulike.org/faq/data.adp

Chapter 3. Building Blocks for the Experiments 42

associated timestamp of the posting. These dumps, however, do not contain any of the other
metadata described above. Because we want to investigate the usefulness of metadata in
Chapter 5 we crawled this metadata ourselves from the CiteULike website using the article
IDs. Appendix A contains more information about this crawling process and some of the
problems we had to solve. We ended up collecting the following five types of metadata.

Topic-related metadata including all the metadata descriptive of the article’s topic, such
as the title and the publication information.

Person-related metadata such as the authors of the article as well as the editors of the
journal or conference proceedings in which it was published.

Temporal metadata such as the year and, if available, month of the article’s publication.

Miscellaneous metadata such as the article type. The extracted data also includes the
publisher details, volume and number information, and the number of pages. DOI
and ISSN/ISBN identifiers were also extracted as well as URLs pointing to the online
whereabouts of the article.

User-specific metadata including the tags assigned by each user, comments by users on an
article, and reading priorities.

A total of 803,521 articles were present in our November 2007 data dump. However, meta-
data could be crawled for only 585,351 (or 72.8%) of these articles. To make for a fair
comparison between the recommendation algorithms that do and do not use metadata, we
removed all articles from our data set for which we could not crawl metadata. This left us
with a data set containing 18,072 user profiles and 585,351 articles. Here, the majority of
the articles with missing metadata were spam entries, so this takes care of our spam filtering
problem to a large extent. We refer the reader to Chapter 7 for we consider to be spam in
social bookmarking systems, and more information on how we know the majority of articles
with missing metadata to be spam.

3.2.2 BibSonomy

BibSonomy is a social bookmarking service for sharing bookmarks and reference lists of
scientific articles9. It allows its users to add their academic reference library as well as their
favorite bookmarks to their online profile on the BibSonomy website. Scientific articles
are stored and represented as their BibTeX representation, and can include abstracts and
links to the papers at the publishers’ websites. Duplicate entries of resources already in
the system are allowed as personal version of the resource, but are detected automatically
by the system to improve browsing. Users can also describe their references using tags
and use these to browse and discover new and related references (Hotho et al., 2006b).
BibSonomy also allows its users to create a personal tag hierarchy by supplying the system
with information about is-a relationships between tags. Figure 3.2 shows a screenshot of a

Chapter 3. Building Blocks for the Experiments 43

Figure 3.2: Screenshot of a user’s profile page in BibSonomy.

user’s profile page in BibSonomy; the tag hierarchy for this user is visible in the frame on
the right-hand side.

BibSonomy is used as a testbed for research into various knowledge-organizational aspects
of social bookmarking by the Knowledge and Data Engineering group of the University
of Kassel, Germany. Some of the tasks that have been investigated using BibSonomy are
constructing topic-specific rankings of bookmarked items (Hotho et al., 2006a), ontology
learning from the BibSonomy folksonomy (Schmitz et al., 2006), tag recommendation for
new posts (Jäschke et al., 2007b), the network properties of the folksonomy (Schmitz et al.,
2007), and spam detection in social bookmarking (Krause et al., 2008). As part of their
ongoing research efforts, they organized the 2008 ECML/PKDD Discovery Challenge which
focused on social bookmarking. The BibSonomy data set was released to the public in May
2008 as part of this challenge10. Each year a different domain and problem set is chosen
as that year’s Discovery Challenge, which is meant to encourage a collaborative research
effort at knowledge discovery and data mining, and an emphasis on business problems and
solutions to those problems. In 2008, two tasks were selected based on the BibSonomy
social bookmarking service: tag recommendation and spam detection. We go into more
detail about the latter task in Chapter 7. For these tasks the organizers made a snapshot of
their BibSonomy system available in the form of a MySQL dump. This dump consisted of
all resources posted to BibSonomy between its inception in 2006 and March 31, 2008,
and contains the same type of metadata for the scientific articles that we collected for

9http://www.bibsonomy.org/
10The website for the challenge can be found at http://www.kde.cs.uni-kassel.de/ws/rsdc08/

http://www.bibsonomy.org/
http://www.kde.cs.uni-kassel.de/ws/rsdc08/

Chapter 3. Building Blocks for the Experiments 44

CiteULike. The distinction between bookmarks and BibTeX records is also made in this
snapshot. We therefore split this data dump into a data set containing only Web bookmarks
and a data set containing only scientific articles. Since it is possible and even encouraged
by the BibSonomy service to add both bookmarks and articles to a user profile, this means
that certain users can end up in both data sets. However, the participation in both data sets
is fairly disjoint in reality: only 22.1% of the users have added both bookmarks and articles.

As required for the spam detection task the data set came with information identifying all
spam content in the BibSonomy system. The Discovery Challenge organizers were able to
collect data of more than 2,600 active users and more than 36,000 spammers by manually
labeling users. The data dump contained these labels that identify users as spammers or
non-spammers. A large portion of all users were spammers, with almost 14 spam users for
each genuine user. We used these labels to remove all spam content from our two data sets,
leaving us with 1,913 user profiles containing Web page bookmarks and 1,310 user profiles
containing scientific articles. One of the reasons that the two BibSonomy data sets are an
order of magnitude smaller than the CiteULike and Delicious data sets is the fact that there
was so much spam content in the original data dump.

3.2.3 Delicious

Delicious is a social bookmarking service for storing, sharing, and discovering Web book-
marks11. It was created in September 2003 by Joshua Schachter and had grown to 5.3
million users and 180 million posts by November 200812. Delicious allows its users to save,
tag, manage, and share Web pages, and enables easy browsing of other Web pages, tags,
and users by offering separate pages for each URL, user, and tag on Delicious. Figure 3.3
displays a screenshot of a user’s profile page in Delicious. It shows the user’s bookmarks on
the left-hand side with the user-generated titles and descriptions for each bookmark, as well
as the tags assigned by the user. The numbers next to each bookmark signal how many peo-
ple have added this Web page to Delicious. The user’s tag cloud is visible on the right-hand
side of the screen. Users also have the possibility of forming a social network with other
users. Users can declare themselves ‘fans’ of other users by adding them to their personal
network; reciprocal fandom by two users is considered as friendship in Delicious. Finally,
with regard to duplicate detection, Delicious does a mild form of automatic duplicate detec-
tion by calculating MD5 hashes of the URLs. However, from our experience with crawling
Delicious, this does not catch all duplicates, although we can provide no authoritative figure
or source for this.

Unlike BibSonomy and CiteULike, Delicious does not offer a data dump of their databases, so
we gathered our data set by crawling a subset of the Delicious website. Since our focus was
on item recommendation for users, our focus in crawling was to collect a balanced, unbiased
set of user profiles, i.e., the complete set of bookmarks a user had posted to Delicious. We
started our data collection process with an earlier crawl performed in November 2006,
starting from the list of the 100 most popular tags on Delicious and performing an outward

11http://www.delicious.com/
12According to http://blog.delicious.com/blog/2008/11/delicious-is-5.html

http://www.delicious.com/
http://blog.delicious.com/blog/2008/11/delicious-is-5.html

Chapter 3. Building Blocks for the Experiments 45

Figure 3.3: Screenshot of a user’s profile page in Delicious.

crawl by treating Delicious as a tripartite graph. For each URL page, all new users and
tags were added to the frontier, and for each user and tag page the frontier was likewise
expanded with the new items, users, and tags. Selecting what tags, users, and items to
crawl next was decided by ordering them by frequency, dividing the frequency range into
10 equal logarithmic bands, and then randomly selected an equal number of users, items,
and tags from each frequency band. This crawl resulted in a list of 300,000 unique users.
We randomly selected 100,000 users from this list to use as the starting point of crawling
our actual data set. For each user we crawled their profile—the entire set of bookmarks
posted by that user—and randomly selected about 18,000 of these users to match the size
of our CiteULike data set. This final data set containing 17,975 user profiles is the one
described in Table 3.1.

There are three potential problems with our data collection method. The first problem is
that doing partial crawls of small-world graphs like Delicious can lead to a data set biased
to the popular URLs, users, and tags (Heymann et al., 2008a). However, by selecting new
targets to crawl by randomly selecting them from logarithmically divided frequency bands,
we hope to have alleviated that to some extent. The second problem is that by randomly
selecting users from a list of users already present on Delicious in November 2006 and
then crawling their user profiles mid-2008, we observe that this precludes crawling any
users who joined Delicious in 2007 or later. The third potential problem is that the crawled
users have had more than a year to increase their profile, which will perhaps lead to a slight
overestimation of certain statistics such as the average user profile size. However, we do not

Chapter 3. Building Blocks for the Experiments 46

believe that these problems will influence the outcome of our recommendation experiments
to a great extent.

While we were able to filter out significant amounts of spam from our BibSonomy and
CiteULike data sets, we do not have any comparable information about spam content in De-
licious. However, (Heymann et al., 2008a) reported that for the data set they crawled from
Delicious—in a similar manner to our crawled method—they found almost no spam. We
therefore assume that spam presence on Delicious is not as big a problem as on BibSonomy
and CiteULike.

3.3 Data Representation

Despite having different metadata fields, we have tried to keep our data representation as
uniform as possible across domains and collections from the three different social book-
marking websites we focus on. We use two different formats to represent each data set:
one to represent the usage information and another to represent the metadata. Usage infor-
mation tells us what user added which items with which tags at what point in time. Our
representation is similar to the way the public CiteULike data dumps are represented. Each
post is represented as one or more lines: one for each tag assigned to the item by that user,
represented by the user, item, time stamp, and tag. This representation is exactly the same
for all collections. Figure 3.4 shows an example of how an example post from Delicious is
represented.

Edgecrusher7711 ba7544754ea353d2540733d0f43a5829 2008-02-28T17:50:00Z hockey
Edgecrusher7711 ba7544754ea353d2540733d0f43a5829 2008-02-28T17:50:00Z sports
Edgecrusher7711 ba7544754ea353d2540733d0f43a5829 2008-02-28T17:50:00Z nhl

USER  ID ITEM ID TIMESTAMP TAG

Figure 3.4: Example of the usage representation format.

In addition to usage data, we also have metadata available for the posts in our collection.
Naturally, the amount of assigned metadata varies from user to user and item to item, but
there is a systematic difference in the metadata fields available between the two domains of
bookmarks (Web pages and scientific articles). The following metadata fields were available
for the four different data sets.

BibSonomy bookmarks: <TITLE>, <DESCRIPTION>, and <URL>

Delicious: <TITLE>, <DESCRIPTION>, and <URL>

BibSonomy articles: <ABSTRACT>, <ADDRESS>, <AUTHOR>, <BOOKTITLE>, <CHAPTER>, <DAY>,
<DESCRIPTION>, <EDITION>, <EDITOR>, <ENTRYTYPE>, <HOWPUBLISHED>, <INSTITUTION>,
<JOURNAL>, <MONTH>, <NOTE>, <NUMBER>, <ORGANIZATION>, <PAGES>, <PUBLISHER>,
<SCHOOL>, <SERIES>, <TITLE>, <TYPE>, <URL>, <VOLUME>, and <YEAR>

Chapter 3. Building Blocks for the Experiments 47

CiteULike: <ABSTRACT>, <ADDRESS>, <AUTHOR>, <BOOKTITLE>, <CHAPTER>, <EDITION>,
<EDITOR>, <ENTRYTYPE>, <HOWPUBLISHED>, <INSTITUTION>, <JOURNAL>, <MONTH>,
<NUMBER>, <ORGANIZATION>, <PAGES>, <PUBLISHER>, <SCHOOL>, <SERIES>, <TITLE>,
<TYPE>, <URL>, <VOLUME>, and <YEAR>

These sets of metadata fields show that there is little difference between the available fields
within domains. It is important to remark that we pre-process the <URL> field by replac-
ing punctuation by whitespace, and by removing common prefixes and suffixes like www,
http://, and .com. We use an SGML format to represent our data with a separate field for
each metadata field. Figure 3.5 shows how the metadata of the example Delicious post from
Figure 3.4 is represented in our SGML format.

!"#$%&'()*+,-./)0*'(1)*22334&56)7+,892:;;2:;)9<:<.=:;>2<<.>?;<9:@=A4B&&

&&!%C%D-B&&

&&&&%1)&EF'*61&")*5F.&GG&HID&IFJK)L&M'7F*(N&%*9.)(N&O*)9K5P/&H)Q(&9P.&7F*)&&

&&!R%C%D-B&&

&&&!SMDB&&

&&&&1TUGRRQQQV61)?F'*61U)*5F.VJF7R&

&&!RSMDB&&

&&!W-$0MC"%C#HB&&

&&&&X&

&&!RW-$0MC"%C#HB&&

!R"#$%B&

Figure 3.5: Example of the metadata representation format.

3.4 Experimental Setup

In order to evaluate different recommender algorithms on our four data sets and to compare
the usefulness of the different information we have available, we need a proper framework
for experimentation and evaluation. Recommender systems evaluation—and the differ-
ences with IR evaluation—has been addressed by, among others, Breese et al. (1998) and
Herlocker et al. (1999, 2004), who make it abundantly clear that the choice for experimen-
tal setup and evaluation metrics is dependent on the recommendation task(s) a system is
supposed to support. As mentioned earlier in Section 3.1, we focus on the Find Good Items
task described by Herlocker et al. (2004), where users are provided with a ranked list of
‘best bets’ made by the system, based on their personal profile. Our experimental setup is
therefore aimed at evaluating this recommendation task.

We start our description of the experimental setup by discussing how we filtered our raw
data sets in Subsection 3.4.1. Then, in Subsection 3.4.2 we describe how we evaluated
our experiments in terms of evaluation metrics and training-test splits. Subsection 3.4.3
critically discusses the choice we made in our experimental setup.

Chapter 3. Building Blocks for the Experiments 48

3.4.1 Filtering

It is common practice in recommender systems evaluation to select realistic subsets of the
data sets used to ensure that reliable recommendations can be generated, and to allow for
fair comparisons of different recommendation algorithms (Herlocker et al., 1999, 2004;
McNee, 2006). This is typically done by filtering out users or items whose profile size or
popularity falls below a certain threshold. It is common to retain only those users who have
added 20 items or more to their personal profile (Herlocker et al., 1999, 2004). We follow
this procedure in our preparation of the data sets as well. In addition, we filter out all items
that occur only once, since these items do not contain sufficiently reliable ties to the rest of
the data set, and thus would only introduce noise for recommendation algorithms13. Fur-
thermore, we filter out all untagged posts from our data sets, because we want to investigate
the influence tags can have on the recommendation process. By retaining untagged posts, it
is more difficult to properly evaluate the performance of tag-based algorithms as users who
never tag their posts would unfairly decrease the evaluation scores of the algorithms that
rely on tags to generate their recommendations. The recommendation performance for the
latter group of users can be extrapolated from the results of standard algorithms we test
such as user-based and item-based CF.

Why Perform Filtering? The rationale for restricting our data set to users with 20 items
or more in their profile is rooted in the fact that users need to have bookmarked at least
some items before the system can generate useful recommendations for that user. Here, the
20-item-threshold has emerged in the literature as an accepted and realistic filtering setup
in experiments, although there has been some research into the effect of sparse profiles on
recommendation (see e.g., Breese et al. (1998) and Wang et al. (2006a)). Users new to the
system could always be shown a list of the most popular content.

There is less consensus in the research community about the filtering threshold for item
popularity, with thresholds reported in the literature ranging from 5 to 20 users minimum.
The rationale behind setting such thresholds is that items with fewer or no ties to the rest of
the data set will be more difficult to predict. In general, the higher the thresholds are set, the
more dense the data set becomes. In turn, this reduces the set of possible items to choose
from, making it easier to generate accurate predictions. This means that by reducing the size
of the data set, performance is likely to go up, which would seem to be counterproductive to
a proper evaluation. A second problem with stronger filtering is that it makes it impossible
to dive into the long tail of items (Celma, 2008).

To ensure a realistic data set, we pick an item filtering threshold of two users and only throw
out the hapax legomena items, i.e., the items that occur only once. Compared to the related
work discussed in Subsection 2.1.1 and Section 4.5 our filtering regimen is among the most
strict, i.e., for the sake of realism we aim to exclude as few users and items as possible. As
a consequence, the recommendation task becomes more difficult, which is reflected in the
scores. Moreover, we do not believe that filtering out the unique items detracts from the
realism of our data sets. Although there is no reason to assume that the unique items are less

13If such filtering is done symmetrically, i.e., using the same filtering threshold for all node types, this is
usually referred to as selecting the p-core of the data set, where p is the filtering threshold (Seidman, 1983;
Jäschke et al., 2007b).

Chapter 3. Building Blocks for the Experiments 49

valuable to their users, we do believe that a considerable majority of these bookmarks are
too personal to be of any collaborative interest. Exploration of our data sets has shown that
these hapax items often include links to personal log-in pages or wish lists, which would not
make for good recommendations to other users14. A third reason for filtering out the unique
items has to do with our evaluation setup and how hapaxes are impossible to predict. This
will be discussed in further detail in the next subsection.

Description of the Filtered Data Sets Table 3.2 shows the statistics of our four data sets
after filtering, and is similar in structure to Table 3.1. These are the versions of our data sets
that we will use in the experiments in the rest of this thesis, unless noted otherwise.

Table 3.2: Statistics of the filtered versions of our four data sets. Untagged posts were
removed from each data set, and in these versions each user has at least 20 items in his
profile and each item has been added by at least 2 people.

bookmarks articles
BibSonomy Delicious BibSonomy CiteULike

users 192 1,243 167 1,322
items 11,165 152,698 12,982 38,419
tags 13,233 42,820 5,165 28,312
posts 29,096 238,070 29,720 84,637
avg # items per user 151.5 191.5 178.0 64.0
avg # users per item 2.6 1.6 2.3 2.2
avg # tags per user 203.3 192.1 79.2 57.3
avg # users per tag 2.9 5.6 2.6 2.7
avg # tags per item 8.4 4.8 3.1 5.3
avg # items per tag 7.1 17.0 7.7 7.3
max # items per user 2,404 2,451 6,325 1,264
max # users per item 41 66 35 188
max # tags per user 5,447 1,784 461 1,186
max # users per tag 117 737 97 299
max # tags per item 96 101 129 483
max # items per tag 1,461 12,021 4,497 1,603
user-item sparsity (%) 98.6427 99.8746 98.6291 99.8334

Table 3.2 shows a number of notable characteristics of the data sets. The two largest data
sets we collected, Delicious and CiteULike, have about 1,300 users each after filtering, and
the two BibSonomy data sets are a magnitude smaller. Users appear to be the most active
on BibSonomy and Delicious with the average number of items in a user profile between
two and three times as high as in the CiteULike collection. When we look at the number
of tags assigned by the users, we see that users bookmarking Web pages tend to use the
most tags: more than twice as many as users of social reference manager websites. We
believe this reflects the greater topical diversity of Web bookmarks compared to scientific
articles. In the latter scenario there may be many different research areas and topics, but in
general the task and domain is pretty well-defined: academic research papers and articles.
For social bookmarking websites, this would only be one possible domain they could cover.
We claim that this greater topical diversity will be reflected later in performance: it is more

14This is especially true for the BibSonomy and Delicious bookmarks data sets.

Chapter 3. Building Blocks for the Experiments 50

difficult to predict for open domains than for closed domains. We revisit this notion later in
Chapter 4.

All three social bookmarking services allow their users to tag items and the same items can
be tagged by users other than the first user to post the item to the system. This means that
the aggregation of all user tags forms a broad folksonomy for each of our four data sets. This
is evident from Table 3.2: the average number of users per item is larger than 1 for all data
sets. It is interesting to note that the average number of tags assigned per item is around two
and a half times as large as the average number of users per item. This means that items are
described to a greater extent by tags than they are by the users that have added them. This
suggests that a recommendation algorithm that generates recommendations by comparing
items could benefit from using tags instead of (or in addition to) just usage information, as
the tag information is less sparse. In contrast, the average number of tags assigned by users
is lower than or equal to the average number of items per user for three of our four data
sets. This suggests that approaches that directly compare users may benefit less from using
the assigned tags than from using the items added by those users.

3.4.2 Evaluation

We take a so-called backtesting approach to evaluation that is common in recommender sys-
tems literature (Breese et al., 1998; Herlocker et al., 2004; Baluja et al., 2008). For each
user we withhold 10 randomly selected items from their profile, and generate recommen-
dations by using the remaining data as training material. If a user’s withheld items are
predicted at the top of the ranked result list, i.e., if the algorithm is able to correctly predict
the user’s interest in those withheld items, then the algorithm is considered to perform well.
In the rest of this thesis, we will refer to the user we are trying to recommend items for as
the active user and his training set items as that user’s active items.

This approach of withholding test items from user profiles also serves as an additional jus-
tification for removing the hapax items. When a hapax item is withheld for an active user,
then it is not present in the training set anymore. If the recommendation algorithm does
not know about the item from its presence in the training set, it can never be recommended
to the active user. This puts an artificial ceiling on possible performance and makes for an
unfair evaluation of the algorithms. If any item occurs at least twice in the entire data set,
then the odds of that item being withheld for evaluation in both cases are much smaller,
sketching a more realistic picture of performance. Naturally, the odds of items not being
recommendable decrease as the item filtering threshold increases even further, the trade-off
here being between unfair and unrealistic evaluation.

The performance of learning algorithms is typically influenced by several parameters. One
way of optimizing these parameters is by maximizing performance on a given data set. Such
tuning, however, tends to overestimate the expected performance of the system, so in order
to prevent this kind of overfitting we use 10-fold cross-validation (Weiss and Kulikowski,
1991). For each of our four data sets, we first divide it into a training and a test set by
randomly selecting 10% of the users to be in our test set. The final performance is evaluated
on this 10% by withholding 10 items from each user, and using the remaining profile items

Chapter 3. Building Blocks for the Experiments 51

together with the training set to generate the recommendations for those 10%. In order to
properly optimize parameters we divide our training set (containing 90% of the users in the
entire collection) up again by randomly dividing the users over 10 folds, each containing
10% of the training users. Each fold is used as a validation set once, with 10 items being
withheld for each validation fold user. The remaining profile items and the data in the
other 9 folds are then used to generate the predictions. The final values for our evaluation
metrics on the withheld items were then averaged over the 10 folds. This is comparable to
macro evaluation in IR where the individual values for precision or recall are computed first
and averaged afterwards. For our recommendation this means that the result is not biased
towards the users with profiles that might be easier to predict. The goal in recommender
systems research is to develop recommendation algorithms that can predict equally well for
any user, not just the most active ones. Figure 3.6 visualizes this experimental setup.

TRAINING SET TEST SET

divide into 10 folds of equal size

run experiments 
using 10 different 

par@@onings

Figure 3.6: Visualization of our 10-fold cross-validation setup. First, the data set is split
on user profiles into a training set and a test set (shaded). The training set is then further
divided into 10 equal folds. In ten separate experiments, each fold serves as a test test once
while the other nine folds serve as the training set. The results are then averaged over the
ten test folds scores.

In our evaluation, we adopt an IR perspective by treating each of the users as a separate
query. The 10 withheld items for each user make up the relevant items for which we have
relevance judgments. For each user a ranked list of items is produced and evaluated on
where these withheld items show up in the result list. While it is certainly possible and very
likely that the recommendation lists contain recommendations that the user would find
relevant or interesting, we cannot know this without the user judging them. This means
that because our relevance judgments correspond to items added to a user’s profile, we can
never have any items judged as being not relevant without user intervention. This also
means that the relevance judgments we derive from our experimental setup are unary and
not binary: we only know if an item is relevant but never if it was not relevant.

Herlocker et al. (2004) assessed the usefulness of different metrics for each of the 6 recom-
mendation tasks they identified. For our “Find Good Items” task they found that metrics that
take into account the ranking of the items are most appropriate. We will therefore use Mean
Average Precision (MAP) as our metric for evaluating the performance of our algorithms.
MAP is one of the most popular metrics in IR evaluation and provides a stable “single-figure
measure of quality across recall levels” (Manning et al., 2008). Average Precision is the
average of the precision values calculated at each relevant retrieved item. To produce the

Chapter 3. Building Blocks for the Experiments 52

MAP, this value is then averaged over all queries. MAP rewards the retrieval of relevant
items ahead of irrelevant items.

In addition to MAP, we evaluated the results of our experiments using three other met-
rics, two accuracy-based and one non-accuracy based. Mean Reciprocal Rank (MRR) is the
average over all queries of the reciprocal of the rank of the first retrieved relevant item.
Precision@N (P@N) is the precision at N retrieved items, i.e., the percentage of relevant
items in the set of N retrieved items. The individual P@N values are also averaged over
all queries to produce a single-figure measure, and we set N to 10. In our experiments we
found that these two accuracy-based metrics painted the same picture of our algorithms as
MAP did, with little or no variation in the statistical significance of differences in runs. We
believe MAP to be more representative of performance than MRR or P@10, because of its
emphasis on precision across different recall levels. For these reasons we only report MAP
scores for our experiments; MRR or P@10 scores will only be mentioned if they help clarify
the situation.

The fourth and final metric, coverage, pertains to an aspect of recommender systems evalua-
tion that is not related to accuracy. Coverage is, depending on the definition, the percentage
of items or users that the system can produce recommendations for (Herlocker et al., 2004).
Certain recommendation algorithms need enough data on a user or item for them to be able
to reliably generate recommendations. Not all algorithms will be able to cover every user
or item. We measured user coverage (UCOV), which is the percentage of all users for which
we were able to generate any predictions at all. As most of the algorithms we will discuss
in this thesis have perfect user coverage, we will only report the UCOV measure when this
is not the case for a certain algorithm and it is relevant for the discussion. For determining
significance of differences between runs, we use a two-tailed paired T-test and report on
significant differences using Í (and Ï) for α = .05 and Î (and È) for α = .01. For instance,
the Í signals a statistically significant improvement over the baseline performance at an α
of 0.05. Similarly, a È signals a statistically significant decrease in performance compared
to the baseline at an α of 0.01.

Breese et al. (1998) describe different experimental protocols that represent different levels
of data-set sparsity. While the influence of sparsity on performance is an interesting issue,
we leave the sparsity issue for future work. We focus only on the complete data sets in
our experiments, i.e., we assume that, within our 10-fold cross-validation experimentation
protocol, we can use all of the profile information we have available about the active users.

3.4.3 Discussion

All experimental setups for evaluating and comparing recommendation algorithms have
their merits and their drawbacks. As the goal of a recommender system is to entice users to
view, read, purchase, or otherwise use items that are new to them and of potential interest,
the most direct and appropriate way to evaluate an algorithm is to run it in live service and
measure the acceptance rate by real users. This is commonly regarded as one side of the
evaluation spectrum. However, in a scenario where many different algorithms need to be
compared, each with their own parameter settings, it is not always practical to explore all

Chapter 3. Building Blocks for the Experiments 53

these variations. Each variation would have to be run long enough and with sufficient users
to be able to draw statistically significant conclusions about the differences in performance.
Additionally, testing poorly performing variations could result in unacceptable degradation
of the live performance of the systems for a subset of the user population (Baluja et al.,
2008).

On the other end of the evaluation spectrum, backtesting and other offline evaluation meth-
ods make it easy to rapidly prototype and compare different algorithms, without having to
rely on or wait for a sufficiently large group of users to work with the system and react to
the recommendations. As it is still unclear which recommendation algorithms will perform
best in social bookmarking systems, we first need to whittle down the space of possible
variations before a live evaluation or comparison with real users should be attempted. For
this reason, we focus on backtesting evaluation in this thesis. There are a number of issues
with our system-based evaluation regimen that should be mentioned to put our results in
the right perspective.

One weakness of offline analyses such as our system-based evaluation is that we are limited
to an objective evaluation of our results, and based on this we cannot determine whether
users will prefer one particular algorithm over another algorithm (Herlocker et al., 2004).
System acceptance is dependent not just on prediction quality, but also on other more sub-
jective criteria such as the user interface. A second problem of offline evaluation that was
already discussed earlier, is that we only possess unary relevance judgments, which do not
allow us to make any inferences about whether or not unseen items would be appreciated by
the user. In addition, because backtesting is done on a snapshot of the social bookmarking
system’s database, it hard to simulate the dynamic nature of live recommendation, where
new users and items are added continuously, with new trends and old trends coming and
going. Such aspects are harder to capture in an offline analysis.

Finally, backtesting is a quite conservative paradigm for evaluation, and is likely to under-
estimate real performance for actual users, since we can only quantitatively evaluate the 10
withheld items for each user (Baluja et al., 2008). Recommendation on such large data sets
is also a difficult task, since we are trying to pick the correct 10 withheld items from item
sets ranging in size from 11,000+ tot 152,000+ items. This boils down to correctly picking
out 0.09% of all items as the recommended items, which is like to trying to find a needle in
a haystack. These are two of the main reasons that MAP values can be quite low overall, as
we will see later. Ideally, our algorithms should not just be biased towards finding exactly
what the user is missing, but rather they should find all useful recommendations.

C
H

A
P

T
E

R 4
FOLKSONOMIC RECOMMENDATION

One of the defining characteristics of any social bookmarking system that supports social
tagging, is the emergence of a folksonomy. This collaboratively generated categorization
of items in a system serves to bind users and items together through an extra annotation
layer. This extra layer of information can have many different applications, as discussed in
Chapter 2. For instance, both searching and browsing through the content in a system can
be improved by using the tags assigned to items by users. This leads us to our first research
question.

RQ 1 How can we use the information represented by the folksonomy to sup-
port and improve the recommendation performance?

More specifically, we are interested in how we can improve the performance of collaborative
filtering algorithms, which base their recommendations on the opinions or actions of other
like-minded users as opposed to item content. We have two options for incorporating the
tagging information contained in the entire folksonomy in CF algorithms. The first option is
to treat the tag layer as an extra, refined source of usage information on top of the normal
bipartite graph of users and items. Here, we take a standard Collaborative Filtering (CF)
algorithm as our starting point and examine a number of ways that tags can be used to
find like-minded users, or to re-rank the recommendations. We will refer to this as Tag-
Based Collaborative Filtering (TBCF). The second option is to use a CF algorithm designed
to operate on the entire tripartite graph. We will refer to such approaches as Graph-Based
Collaborative Filtering (GBCF). We discuss the most important related work on GBCF ap-
proaches and compare two of the state-of-the-art GBCF algorithms to our own tag-based
algorithms.

This chapter is organized as follows. We start in Section 4.1 by establishing the notation and
definitions that we will use throughout this chapter. In Section 4.2 we establish a popularity-
based recommendation baseline that is currently employed by several social bookmarking
websites. Section 4.3 establishes a stronger baseline by applying two CF algorithms to our
data sets. We examine a number of ways in which we can incorporate tags into our CF

55

Chapter 4. Folksonomic Recommendation 56

algorithms and present these TBCF algorithms in Section 4.4. Section 4.5 discusses the
related work. on recommendation for social bookmarking websites. In Section 4.6 we look
at two state-of-the-art GBCF approaches from the related work and compare them to our
own TBCF algorithms. In Section 4.7 we answer RQ 1 and present our conclusions.

4.1 Preliminaries

We start by establishing the notation and definitions that will be used throughout this chap-
ter. To be consistent with other work on recommendation for social bookmarking, we base
our notation in part on the work by Wang et al. (2006a), Clements et al. (2008a), and Tso-
Sutter et al. (2008). In the social bookmarking setting that we focus on in this thesis, users
post items to their personal profiles and can choose to label them with one or more tags.
We recall that, in Chapter 2, we defined a folksonomy to be a tripartite graph that emerges
from this collaborative annotation of items. The resulting ternary relations that make up
the tripartite graph can be represented as a 3D matrix, or third-order tensor, of users, items,
and tags. The top half of Figure 4.1 illustrates this matrix view. We refer to the 3D matrix
as D(uk, il , tm). Here, each element d(k, l, m) of this matrix indicates whether user uk (with
k = {1, . . . , K}) tagged item il (with l = {1, . . . , L}) with tag tm (with m = {1, . . . , M}),
where a value of 1 indicates the presence of the ternary relation in the folksonomy.

UI

D

R

items

items

users

users

tags

Σ

u 1

u K

i 1 i L itemsi 1 i L

users

u 1

u K

binarize

Figure 4.1: Representing the tripartite folksonomy graph as a 3D matrix. The ratings ma-
trix R is derived from the tripartite graph itself and directly represents what items were
added by which users. Aggregation over the tag dimension of D gives us matrix UI, con-
taining the tag counts for each user-item pair. By binarizing the values in UI we can obtain
R from UI. The figure is adapted from Clements et al. (2008a) and Tso-Sutter et al. (2008).

Chapter 4. Folksonomic Recommendation 57

In conventional recommender systems, the user-item matrix contains rating information.
The ratings can be explicit, when they are entered directly by the user, or implicit, when they
are inferred from user behavior. In our case we have implicit, unary ratings where all items
that were added by a user receive a rating of 1. All non-added items do not have a rating
and are indicated by ;. We extract this ratings matrix R(uk, il) for all user-item pairs directly
from the tripartite graph. We denote its individual elements by xk,l = {1,;}. As evident from
Figure 4.1, we can also extract a user-item matrix from D by aggregating over the tag dimen-
sion. We then obtain the K × L user-item matrix UI(uk, il) =

∑M
m=1 D(uk, il , tm), specifying

how many tags each user assigned to each item. Individual elements of UI are denoted by
xk,l . We can define a binary version of this matrix UIbinary(uk, il) as sgn

∑M
m=1 D(uk, il , tm)

where the sgn function sets all values > 0 to 1. Because we filtered our data sets to include
only tagged content, as described in Chapter 3, our ratings matrix R is the same as UIbinary

1.

Similar to the way we defined UI we can also aggregate the content of D over the user and
the item dimensions. We define the K ×M user-tag matrix UT(uk, tm) =

∑L
l=1 D(uk, il , tm),

specifying how often each user used a certain tag to annotate his items. Individual el-
ements of UT are denoted by yk,m. We define the L × M item-tag matrix IT(il , tm) =
∑K

k=1 D(uk, il , tm), indicating how many users assigned a certain tag to an item. Individ-
ual elements of IT are denoted by zl,m. We can define binary versions of UT and IT in a
manner similar to UIbinary. Figure 4.2 visualizes the 2D projections in the users’ and items’
tag spaces.

!"

!"#$%

&$'($%

)!'*$%

!"

#$"!"#$%

"#$
&$'($%

%&"

%'"

#&"

%#$)!'*$%

(&"

()"

!"#$% #$"#&"
!"

Figure 4.2: Deriving tagging information at the user level as UT, and the item level as IT,
by aggregating over the item and user dimensions respectively.

The ratings matrix R can be represented by its row vectors:

R= [−→u1 , . . . ,−→uk]
T , −→uk = [xk,1, . . . , xk,L]

T , k = 1, . . . , K ,

where each row vector −→uk
T corresponds to a user profile, which represents the items that

user added to his profile. R can also be decomposed into column vectors:

R= [
−→
i1 , . . . ,

−→
il],
−→
il = [x1,l , . . . , xK ,l]

T , l = 1, . . . , L,

where each column vector
−→
il represents an item profile, containing all users that have

added that item. We can decompose the UI, UT, and IT matrices in a similar fashion. We

1Note that this would not be the case if R contained explicit, non-binary ratings.

Chapter 4. Folksonomic Recommendation 58

will also refer to the user and item profiles taken from the UI matrix as −→uk and
−→
il . We

decompose the UT and IT matrices, which have the same number of columns M , into row
vectors in the following way:

UT= [
−→
d1 , . . . ,

−→
dk]

T ,
−→
dk = [yk,1, . . . , yk,M]

T , k = 1, . . . , K

IT= [
−→
f1 , . . . ,

−→
fl]

T ,
−→
fl = [zl,1, . . . , zl,M]

T , l = 1, . . . , L

The vectors
−→
dk and

−→
fl are the tag count vectors for the users and items respectively.

Formally, the goal of each of the recommendation algorithms discussed in this chapter is
to rank-order all items that are not yet in the profile of the active user uk (so xk,l = ;) so
that the top-ranked item is most likely to be a good recommendation for the active user.
To this end, we predict a rating or score bxk,l for each item that user uk would give to item
il . In our social bookmarking scenario we do not have explicit ratings information (e.g.,
4 out of 5 stars), so we try to predict whether a user will like an item or not. The final
recommendations for a user RECS(uk) are generated by rank-ordering all items il by their
predicted rating bxk,l as follows:

RECS(uk) = { il | rank bxk,l , xk,l = ; }. (4.1)

Only items not yet in the user’s profile −→uk are considered as recommendations (xk,l = ;).
Regardless of how the ratings bxk,l are predicted, we always generate the recommendations
according to Equation 4.1.

4.2 Popularity-based Recommendation

One of the most straightforward recommendation strategies is to recommend the most pop-
ular content in a system to every user. Such a popularity-based recommendation algorithm
ranks the items in the system by popularity, and presents every user with this list of rec-
ommendations, minus the items the user already owns. Recommending items based solely
on popularity in the system without any regard for personal preferences can be expected to
produce poor recommendations. The list of most popular items reflects the combined tastes
of all users in the system, and thus represents the ‘average’ user of the system. Rather few
actual users will be similar to this average user.

In general, most users have only a few of the most popular items in their profile. The
majority of their items, however, are in the long tail of the item distribution, and not in
the list of most popular content. As a popularity-based algorithm cannot reach into the
long tail, it cannot be expected to provide novel recommendations. We therefore consider
popularity-based recommendations to serve as a weak baseline. We include the algorithm
in this chapter, because popularity-based recommendations have become a standard feature

Chapter 4. Folksonomic Recommendation 59

of many social news and social bookmarking websites, and therefore a staple algorithm to
compare new algorithms against (Nakamoto et al., 2008; Zanardi and Capra, 2008; Wetzker
et al., 2009). Delicious is one example of such a social bookmarking website that uses
popularity-based recommendation2. We therefore include it as our weak baseline to show
how much more sophisticated algorithms can improve upon a popularity-based algorithm.

Formally, we define popularity-based recommendation as calculating a normalized popular-
ity score bxk,l for each item according to Equation 4.2:

bxk,l =

�

�{
−→
il | xa,l 6= ; }

�

�

K
, (4.2)

where the total number of users that have added item il is counted and normalized by
dividing it by the total number of users K in the data set. Table 4.1 contains the results of
popularity-based recommendation runs on our four data sets. We reiterate here for the sake
of the reader that we refer to the BibSonomy data sets containing scientific articles and Web
bookmarks as BibArt and BibBoo respectively. For the sake of convenience we include them
once in Table 4.1 as well.

Table 4.1: Results of the popularity-based baseline. Reported are the MAP scores.

Run
bookmarks articles

BibSonomy Delicious BibSonomy CiteULike
(BibBoo) (Delicious) (BibArt) (CiteULike)

Popularity baseline 0.0044 0.0022 0.0122 0.0040

As expected, the results show that popularity-based recommendation does not achieve very
high scores. Popularity-based recommendation achieves its highest MAP scores on the two
smallest data sets, BibBoo and BibArt, and the lowest scores are achieved on the Delicious
data set. However, all scores are unlikely to be of practical value for most users however.
Popularity-based recommendation achieves its highest P@10 score on BibArt at 0.0143,
which means that on average only 0.14 correct items can be found among the top 10 of
recommended items. The highest MRR rank score on BibArt is 0.0565. This means that, on
average, the first relevant withheld item is found at rank 18. The lowest MRR score on the
Delicious data set means that the first relevant item there is found at rank 51 on average.
Most users are unlikely to go through the first 50 recommended items to find only one that
would be of value to them.

The MAP scores on the CiteULike data set are high in comparison to Delicious, the other
large data set. It is easier for a popularity-based algorithm to deal with data sets with a
smaller number of total items. With less items in total, the probability of a user’s item to be
part of the fixed-size set of most popular items is larger. Another pattern we see is that the
scores on the data sets covering scientific articles are higher than those on the bookmarks
data sets at corresponding data set sizes. We believe this is a reflection of the greater topical

2According to http://www.seomoz.org/blog/reddit-stumbleupon-delicious-and-hacker-
news-algorithms-exposed (last visited: July 29, 2009).

http://www.seomoz.org/blog/reddit-stumbleupon-delicious-and-hacker-news-algorithms-exposed
http://www.seomoz.org/blog/reddit-stumbleupon-delicious-and-hacker-news-algorithms-exposed

Chapter 4. Folksonomic Recommendation 60

diversity of social bookmarking websites over social reference managers as we mentioned
earlier in Subsection 3.4.1. The greater diversity is reflected in a more difficult prediction
task with lower scores.

4.3 Collaborative Filtering

A common and well-understood source of information for recommendations are usage pat-
terns: who added or rated what content in the system? As mentioned earlier in Chapter 2,
the class of algorithms that operate on such transaction data are called Collaborative Fil-
tering algorithms (CF). We distinguished between two classes of CF algorithms—memory-
based and model-based—and described the strengths and weaknesses of both types. In the
experiments described in this chapter we focus on the k-Nearest Neighbor (k-NN) algo-
rithm, one of the memory-based CF algorithms, and extend it in various ways to include
tagging information in our TBCF algorithms. In this section we describe and establish the
k-NN algorithm without tagging information as our strong baseline, and evaluate its per-
formance on our four data sets. We implement and evaluate both the user-based and the
item-based variants of the k-NN algorithm as introduced earlier in Subsection 2.1.1.

We pick the k-NN algorithm because it is a well understood algorithm that can intuitively
be extended to incorporate other additional information (Herlocker et al., 1999; Burke,
2002). While model-based algorithms such as PLSA and matrix factorization have been
shown to outperform memory-based algorithms in several cases (Hofmann, 2004; Koren,
2008), it is not always clear how to include extra information such as tags elegantly into
these algorithms. Furthermore, memory-based algorithms better allow for the generation
of intuitive explanations of why a certain item was recommended to the user. We see such
functionality as an important component of social bookmarking systems, which rely heavy
on user interaction and ease of use.

In the next Subsection 4.3.1 we formally define both variants of the k-NN algorithm. We
present the results of the experiments with these algorithms on our data sets in Subsection
4.3.2, and discuss these results in Subsection 4.3.3.

4.3.1 Algorithm

The k-NN algorithm uses the behavior of similar users or items (the nearest neighbors) to
predict what items a user might like, and comes in two ‘flavors’. In user-based filtering we
locate the users most similar to the active users, and then look among their items to generate
new recommendations for the active users. In item-based filtering we locate the items most
similar to items in the active user’s profile, and order and present those similar items to
the active user as new recommendations. In both cases the recommendation process is
comprised of two steps: (1) calculating the similarity between the active object and other
objects, and (2) using the N most similar neighboring objects to predict item ratings for

Chapter 4. Folksonomic Recommendation 61

the active user3. In the first step we calculate the similarities between pairs of users or
pairs of items. Many different similarity metrics have been proposed and evaluated over
time, such as Pearson’s correlation coefficient and cosine similarity (Herlocker et al., 1999;
Breese et al., 1998). We use cosine similarity in our experiments because it has often been
used successfully on data sets with implicit ratings (Breese et al., 1998; Sarwar et al., 2001).

User-based CF We first describe the user-based CF algorithm. User similarities are calcu-
lated on the user profile vectors −→uk taken from the R matrix. We define the cosine similarity
simcosine(uk, ua) between two users uk and ua as

simcosine(uk, ua) =
−→uk ·
−→ua

||−→uk || ||
−→ua ||

. (4.3)

The next step in user-based filtering is determining the top N similar users (or items) for
user uk. We denote this set as the Set of Similar Users SSU(uk) and define it as

SSU(uk) = { ua | rank simcosine(uk, ua)≤ N , xa,l 6= ; }, (4.4)

where we rank all users ua on their cosine similarity simcosine(uk, ua) to user uk (or on
another similarity metric), and take the top N . Consequently, |SSU(uk)| = N . For each user
ua, we only consider those items that ua added to his profile (xa,l 6= ;). The next step is
to do the actual predictions for each item and generate the list of recommendations. The
predicting score bxk,l of item il for user uk is defined as

bxk,l =
∑

ua ∈ SSU(uk)

simcosine(uk, ua), (4.5)

where the predicted score is the sum of the similarity values (between 0 and 1) of all N
nearest neighbors that actually added item il (i.e., xa,l 6= ;). When applying user-based
filtering to data sets with explicit ratings, it is common to scale bxk,l to a rating in the original
ratings scale (Sarwar et al., 2001). We do not scale our prediction bxk,l as we are working
with unary ratings and are only interested in rank-ordering the items by their predicted
score4.

A recurring observation from the literature about CF algorithms is that universally liked
items are not as useful in capturing similarity between users as less common items, see e.g.,
Breese et al. (1998). Items that are added, rated, or purchased frequently can dominate
the search for similar items, making it difficult to provide the user with novel recommenda-
tions. Adapted from the popular tf·idf term weighting algorithm from the field of IR (Salton
and Buckley, 1988), we also try mitigating the influence of frequently occurring items by

3Note that since we reserved the letter k to index the users, we use N instead to denote the number of
nearest neighbors.

4It is also common practice in CF to normalize the user’s ratings by subtracting the user’s average rating
(Herlocker et al., 1999). However, we do not need to normalize in this manner, since we are working with
implicit, unary ratings.

Chapter 4. Folksonomic Recommendation 62

weighting the elements of −→uk with the inverse user frequency of the user’s items5. We define
the inverse user frequency of item il as

idf(il) = log
K

|{
−→
il | xa,l 6= ; }|

. (4.6)

We then define user profile vectors
−→
u′k weighted by the inverse user frequency as

−→
u′k =

[xk,1 · idf(i1), . . . , xk,L · idf(iL)]T . Similarity between two idf-weighted user vectors is also
calculated using the cosine similarity. We will refer to these idf-weighted runs as U-IDF-SIM

and to the runs without idf-weighting, which effectively use binary vectors, as U-BIN-SIM.

Item-based CF The item-based k-NN algorithm follows the same general principle as the
user-based filtering algorithm. Instead of comparing users directly, we try to identify the
best recommendations for each of the items in a user’s profile. In other words, for item-
based filtering we calculate the similarities between the test items of the active user uk and
the other items that uk has not yet added (so xk,b = ;). Item similarities are calculated on

the item profile vectors
−→
il taken from the R matrix. Similar to user similarity, we define

cosine similarity simcosine(il , ib) between two items il and ib as

simcosine(il , ib) =
−→
il ·
−→
ib

||
−→
il || ||

−→
ib ||

. (4.7)

Analogous to user-based filtering, we can also suppress the influence of the most prolific
users, i.e., users that have added a disproportionately large number of items to their profile,
such as bots or spam users. This inverse item frequency of a user uk is defined as

idf(uk) = log
L

|{ −→uk | xk,b 6= ; }|
. (4.8)

We then define item profile vectors
−→
i′l weighted by the inverse item frequency as

−→
i′l = [x1,l ·

idf(u1), . . . , xK ,l ·idf(uK)]T . Again, we calculate the similarity between two idf-weighted item
vectors using cosine similarity. The next step is to identify the neighborhood of most similar
items. We define the top N similar items as the Set of Similar Items SSI(il)

SSI(il) = { ib | rank simcosine(il , ib)≤ N , xk,b 6= ; }, (4.9)

where we rank all items ib on their cosine similarity simcosine(uk, ua) to item il (or on another
similarity metric), and take the top N . For each item ib, we only consider those items that
are most similar to the items uk added to his profile (xk,b 6= ;). The next step is to do the
actual predictions for each item and generate the list of recommendations. The predicted
score bxk,l of item il for user uk is defined as

5We refer to both the inverse user frequency and the inverse item frequency with id f for clarity and consis-
tency with previous work.

Chapter 4. Folksonomic Recommendation 63

bxk,l =
∑

ib ∈ SSI(il)

simcosine(il , ib), (4.10)

where the predicted score is the sum of the similarity values (between 0 and 1) of all the
most similar items that were added by user uk (i.e., xk,b 6= ;). The final recommendations
RECS(uk) for user uk for both algorithms are then generated as described in Section 4.1.
We refer to these item-based CF runs with and without idf-weighting runs as I-IDF-SIM and
I-BIN-SIM respectively. For the convenience of the reader, we have included a glossary in
Appendix B that lists all of the run names used in Chapter 4 with a brief description.

Determining the Optimal Number of Nearest Neighbors After the user and item simi-
larities are calculated, the top N neighbors are used to generate the recommendations. For
k-NN classifiers, the neighborhood size is an algorithm parameter that can significantly in-
fluence prediction quality. Using too many neighbors might smooth the pool from which
to draw the predictions too much in the direction of the items with the highest general
popularity, whereas not considering sufficient neighbors might result in basing too many
decisions on accidental similarities.

We use our 10-fold cross-validation setup to optimize the number of neighbors N as de-
scribed in Subsection 3.4.2. The questions remains of what values of N should we examine?
Examining all possible values from one single neighbor to considering all users or items as
neighbors (where N = K or L respectively) would be a form of overfitting in itself, as well
as computationally impractical on the larger data sets. We therefore follow an iterative
deepening approach as described by Van den Bosch (2004) for selecting the values of N .
We construct a clipped, pseudo-quadratic series of 100 iterations. For each iteration q, the
N value is determined by N = 1.1q, rounded off to the nearest integer. As an example we
list the first 40 unique values for N (corresponding to 55 iterations):

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 17, 19, 21, 23, 25, 28, 30, 34, 37,
41, 45, 49, 54, 60, 66, 72, 80, 88, 97, 106, 117, 129, 142, 156, 171, 189, . . .

We employ the following heuristic optimization procedure to find the optimal number of
neighbors. We keep doing additional iterations and evaluating values of N as long as the
MAP score keeps increasing. We stop if the MAP score remains the same or decreases for a
new value of N . To prevent the problem of ending up in a local maximum, we always take 5
more additional steps. If the MAP score has not increased statistically significantly anywhere
in those 5 steps, then we take as our N the value corresponding to the maximum MAP score
we encountered so far. If there is a significant increase in MAP within those 5 extra steps,
we assume we found a local maximum and keep evaluating additional iterations. When we
reach the maximum for N (the number of users or items in the data set, depending on the
algorithm) we stop and take as N the value corresponding to the highest MAP score. For
example, if the MAP score stops increasing at when N = 13, we examine the next 5 N values
from 14 to 21. If none of those additional runs have MAP scores significantly higher than
the MAP for N = 13, we take the N with the maximum MAP score in the interval [13, 21].

Chapter 4. Folksonomic Recommendation 64

4.3.2 Results

The relatively low scores achieved by the popularity-based algorithm of the previous sec-
tion mean that there is much room for improvement. Table 4.2 shows the results of the
two user-based and item-based variants of the k-NN algorithm. As expected, the k-NN al-
gorithm outperforms popularity-based recommendation on all four data sets, with improve-
ments ranging from a 109% increase on Delicious to a more than twenty-fold increase on
CiteULike. These improvements are statistically significant on all data sets except Delicious.

Table 4.2: Results of the k-Nearest Neighbor algorithm. Reported are the MAP scores as
well as the optimal number of neighbors N . Best-performing runs for each data set are
printed in bold. The percentage difference between the best popularity-based run and the
best CF run is indicated in the bottom row of the table.

Runs
bookmarks articles

BibSonomy Delicious BibSonomy CiteULike
MAP N MAP N MAP N MAP N

Popularity baseline 0.0044È - 0.0022È - 0.0122È - 0.0040È -
U-BIN-SIM 0.0258Î 6 0.0046È 15 0.0865Î 4 0.0746Î 15
U-BIN-IDF-SIM 0.0277Î 13 0.0040È 15 0.0806Î 4 0.0757Î 15
I-BIN-SIM 0.0224Î 13 0.0027È 25 0.0669Î 37 0.0826Î 117
I-BIN-IDF-SIM 0.0244Î 34 0.0025È 14 0.0737Î 49 0.0887Î 30
% Change +529.5% +109.1% +609.0% +2117.5%

User-based filtering outperforms item-based filtering on three of four data sets; only on
CiteULike does item-based filtering work better, where this difference is also statistically
significant (p < 0.05). The other differences between user-based and item-based filtering
are not significant. There appears to be no clear advantage to applying idf-weighting to the
profile vectors: there are small differences in both directions, but none of the differences
between the runs with and without idf-weighting are significant. In general, it seems that
bookmark recommendation is more difficult than article recommendation: even within the
same collection, recommending BibSonomy bookmarks on BibBoo achieves MAP scores that
are nearly three times as low as recommending BibSonomy articles using BibArt. While
the BibArt and CiteULike performance numbers are about equal despite the size difference
between the two data sets, the difference between BibBoo and Delicious is much larger.
Finally, we see that the optimal number of neighbors tends to be larger for item-based
filtering than for user-based filtering, but the actual number seems to be data set dependent.

4.3.3 Discussion

Our first observation is that memory-based CF algorithms easily outperform a recommenda-
tion approach based solely on popularity. This was to be expected as recommending items
based solely on popularity in the system without any regard for personal preferences can
be expected to produce poor recommendations. In contrast, CF learns the personal pref-
erences of users, leading to better, more personalized recommendations. The user-based
filtering algorithm achieved higher MAP scores on three of our four data sets, although
these differences were not statistically significant. What could be the explanation for these

Chapter 4. Folksonomic Recommendation 65

differences between user-based and item-based filtering? A possible explanation for this is
that the average number of items per user is much higher than the average number of users
per item. Since there are more items to potentially match, calculating a meaningful overlap
between user profile vectors could be easier than between item profile vectors. This could
also explain why item-based filtering works worst on Delicious, as it has the lowest average
at 1.6 users per item.

The difference in the optimal number of neighbors between user-based and item-based can
also be explained by this. The average number of users per item is much lower than the
average number of items per users, which makes it more difficult to calculate meaningful
overlap between item profile vectors. It is then understandable that the item-based filtering
algorithm would need more nearest neighbors to generate correct predictions. However,
the user profile vectors in our data sets are slightly more sparse than the item profile vec-
tors, which would put user-based filtering at a disadvantage as there might be less overlap
between the different users. In practice, these two forces are in balance, leading to the lack
of significant differences between user-based and item-based filtering.

A second observation was that recommending bookmarks appears to be more difficult than
recommending scientific articles: MAP scores on the article data sets are nearly three times
as high as the MAP scores on the bookmarks data sets. We believe this reflects that bookmark
recommendation is a more difficult problem because of the open domain. In our article rec-
ommendation task there may be many difficult research areas and topics, but in general the
task and domain is pretty well-defined: academic research papers and articles. In contrast,
the Delicious and BibBoo data sets cover bookmarked Web pages, which encompass many
more topics than scientific articles tend to do. Users can be expected to have more different
topics in their profile, making it more difficult to recommend new, interesting bookmarks
based on their profiles.

To determine whether this explanation is correct, we need to show that user profiles con-
taining Web bookmarks are topically more diverse that profiles containing only scientific
articles. In all of our data sets we have topic representations of the content in the form of
tags. Tags often represent the intrinsic properties of the items they describe, and we can
use these tags to estimate how topically diverse the user profiles are in our four data sets.
We can expect users with topically diverse profiles to have a smaller average tag overlap
between their items. One metric that can be used to represent topical diversity is the aver-
age number of unique tags per user as reported in Table 3.2. These averages are 203.3 and
192.1 for BibBoo and Delicious respectively, which is significantly higher than the 79.2 and
57.3 for BibArt and CiteULike.

However, it is possible that Delicious and BibBoo users simply use more tags to describe
their bookmarks on average than users who describe scientific articles, but still have a low
topical diversity. To examine this, we calculate the average Jaccard overlap between the
tags assigned to the item pairs for each user profile separately, and then generate a macro-
averaged tag overlap score for each data set. This number represents an approximation
of the topical diversity of a data set. We find that the average tag overlap for BibBoo
and Delicious is 0.0058 and 0.0001 respectively, whereas for BibArt and CiteULike it is
0.0164 and 0.0072 respectively. This seems to be in line with our assumption that bookmark

Chapter 4. Folksonomic Recommendation 66

recommendation is a more difficult task, because the user profiles are more diverse, and
therefore harder to predict. The difference between performance on BibBoo and Delicious
might be explained by the fact that BibSonomy, as a scientific research project, attracts a
larger proportion of users from academia. In contrast, the scientific community is only a
subset of the user base of Delicious, which could again lead to a greater diversity in topics.

4.4 Tag-based Collaborative Filtering

If we only applied the standard memory-based CF algorithms to our data sets, we would
be neglecting the extra layer of information formed by the tags, which could help us pro-
duce more accurate recommendations. As mentioned before, we consider two options for
incorporating the tags: (1) extending existing CF algorithms to create TBCF algorithms, or
(2) recommending based on the entire tripartite graph (GBCF algorithms). In this section
we propose three different TBCF algorithms, corresponding to three different ways of ex-
tending the standard k-NN algorithm to incorporate tag information and find like-minded
users.

The first TBCF algorithm employs user and item similarities based on the overlap in tags
assigned to items. We discuss this algorithm in Subsection 4.4.1. Subsection 4.4.2 describes
the second type of TBCF algorithm, which calculate user and item similarities based on
the overlap in tagging intensity, without looking at the actual overlap between tags. The
third TBCF algorithm, described in Subsection 4.4.3, combines tagging information with
usage information by fusing together (1) the similarities based on tagging overlap, from the
first type of TBCF algorithm, and (2) the similarities based on usage information, i.e., from
regular CF. We present the results of our experiments with these three TBCF algorithms in
Subsection 4.4.4 and discuss the results in Subsection 4.4.5.

4.4.1 Tag Overlap Similarity

The folksonomies present in our four data sets carry with them an extra layer of connections
between user and items in the form of tags. The tag layer can be used to examine other ways
of generating similarities between users or items. For instance, users that assign many of
the same tags and thus have more tag overlap between them, can be seen as rather similar.
Items that are often assigned the same tags are also more likely to be similar than items that
share no tag overlap at all. We propose calculating the user and item similarities based on
overlap in tagging behavior as opposed to usage information that only describes what items
a user has added. We will refer to a TBCF algorithm using tag overlap similarities for CF as
TOBCF.

What do we expect from such an approach? In the previous section we signaled that sparsity
of user profile and item profile vectors can be a problem for the standard memory-based CF
algorithms. As users tend to assign multiple tags to an item—with averages ranging from
3.1 to 8.4 in our data sets—when they post it to their personal profile, this means a reduced
sparsity, which could lead to better predictions. We expect this effect to be the strongest

Chapter 4. Folksonomic Recommendation 67

for item-based filtering. On average, the number of tags assigned to an item is 2.5 times
higher than the number of users who have added the item. This means that, on average,
item profile vectors from the IT matrix are less sparse than item profile vectors from the UI
matrix. This difference is not as well-pronounced for the items per user and tags per user
counts: in some data sets users have more items than tags on average, and more tags than
items in other data sets. This leads us to conjecture that using tags for user-based filtering
will not be as successful.

Many different similarity metrics exist, but we restrict ourselves to comparing three metrics:
Jaccard overlap, Dice’s coefficient, and the cosine similarity. The only difference between
this approach and the standard CF algorithm is in the first step, where the similarities are
calculated.

User-based Tag Overlap CF For user-based TOBCF, we calculate tag overlap on the UT
matrix or on the binarized version UTbinary, depending on the metric. These matrices are
derived as shown in Figure 4.2. Both the Jaccard overlap and Dice’s coefficient are set-based
metrics, which means we calculate them on the binary vectors from the UTbinary matrix. The
Jaccard Overlap simJaccard(dk, da) between two users dk and da is defined as

simUT−Jaccard(dk, da) =
|
−→
dk ∩

−→
da |

|
−→
dk ∪

−→
da |

. (4.11)

Likewise, Dice’s coefficient simDice(dk, da) is defined as

simUT−Dice(dk, da) =
2|
−→
dk ∩

−→
da |

|
−→
dk |+ |

−→
da |

. (4.12)

We refer to the user-based runs with Jaccard overlap and Dice’s coefficient as UT-JACCARD-
SIM and UT-DICE-SIM respectively. The cosine similarity is calculated in three different ways.
First, we calculate it on the regular tag count vectors from UT as simUT−cosine−tf (dk, da),
and on the binary vectors from the UTbinary matrix as simUT−cosine−binary(dk, da). In addition
to this, we also experiment with idf-weighting of the tags in the user tag count vectors
according to Equation 4.6. We then calculate the cosine similarity simUT−cosine−tfidf (dk, da)
between these weighted user profile vectors. In each case, the cosine similarity is calculated
according to

simUT−cosine(dk, da) =
−→
dk ·
−→
da

||
−→
dk || ||

−→
da ||

. (4.13)

We refer to these three runs as UT-TF-SIM, UT-BIN-SIM, and UT-TFIDF-SIM respectively.

Item-based Tag Overlap CF For item-based TOBCF, we calculate the item-based versions
of the similarity metrics simIT−Jaccard(fl , fb), simIT−Dice(fl , fb), and simIT−cosine−binary(dk, da)
on ITbinary. We calculate the tag frequency and weighted tag frequency vectors similarities

Chapter 4. Folksonomic Recommendation 68

simIT−cosine−tf (dk, da) and simIT−cosine−tfidf (dk, da) on IT. We refer to these five item-based
runs as IT-JACCARD-SIM, IT-DICE-SIM, IT-BIN-SIM, IT-TF-SIM, and IT-TFIDF-SIM respectively.

4.4.2 Tagging Intensity Similarity

Instead of looking at tag overlap as a measure of user or item similarity, we can also look
at another aspect of tagging behavior to locate kindred users or items: tagging intensity.
Adding a tag costs the user a small amount of effort, which could signal that users are more
invested in those items they to which assign many tags. Tagging intensity could therefore
be seen as an approximation to a user actively rating his items. Here, more effort invested
in tagging corresponds to a higher rating for that item. If two users both assign many tags
to the same items and only few tags to other items, they can be thought of as being more
similar in tagging behavior.

Naturally, users might very well assign many different tags to an item for different reasons.
Some items might simply be too complex to describe by just one or two tags. Furthermore,
the assumption that more richly tagged items would also be rated more highly by the users
is not without its caveats. Indeed, Clements et al. (2008a) investigated this for their data
set based on the LibraryThing6 data set. They compared actual book ratings to the number
of tags assigned to the books and found only a weak positive correlation between the two.
We can not repeat this, since we only have unary ratings in our data sets. However, the idea
has its merits, since Clements et al. did not find any significant differences between using
actual ratings for recommendation compared to using the tag counts.

We propose our own user (and item) similarity metrics that compare users (and items)
on the intensity of their tagging behavior. We will refer to the algorithms that use these
similarity metrics as TIBCF algorithms. The UI matrix contains the tag counts associated
with each post in a data set. These represent how many tags were assigned to a certain item
by a user. For user-based TIBCF we calculated these tag intensity-based similarities on the
user profile vectors from UI according to Equation 4.3. For item-based TIBCF we calculate
the item similarities on the item profile vectors from UI according to Equation 4.7. The rest
of the approach follows the standard k-NN algorithm described in Subsection 4.3.1.

4.4.3 Similarity Fusion

The third TBCF algorithm we propose is one that combines two different algorithms: (1) the
standard k-NN CF algorithm from Section 4.3, which uses data about all users’ preferences
for items to generate recommendations, and (2) the TOBCF algorithm from Subsection 4.4.1,
which looks at the overlap in tagging behavior to identify the like-minded users and gen-
erate recommendations. As both approaches use different information to generate their
recommendations, it is possible that an approach that combines the best of both worlds will
outperform the individual approaches.

6http://www.librarything.com

http://www.librarything.com

Chapter 4. Folksonomic Recommendation 69

There are many different ways of combining different approaches. We propose one possi-
bility here, similarity fusion , where we linearly combine different sets of user similarities
into a single set of similarities, as illustrated in Figure 4.3. The same principle holds for
item-based filtering: there, we linearly combine the item similarities. We will refer to this
approach as SimFuseCF.

λ ∙  + (1 ‐ λ) ∙  

0.4 0.75

=

λ ∙ 0.4 + (1 ‐ λ) ∙ 0.75

Usage‐based user 
similari/es

Tag overlap user 
similari/es

Fused user 
similari/es

users

u 1

u K

usersu 1 u K

users

u 1

u K

usersu 1 u K

users

u 1

u K

usersu 1 u K

Figure 4.3: Fusing the usage-based and tag-based similarity matrices for user-based TBCF.
The highlighted cells show how individual user-user similarities are combined. Similarity
between a user and himself is always equal to 1.

In our SimFuseCF algorithm, we take as input the similarity matrices from two different
approaches and linearly combine them element by element using a weighting parameter λ
of which the value lies in the range [0,1]. The similarities were normalized into the [0,1]
range for each set of similarities separately. Fusing the two different similarity sources is
done according to

simfused = λ · simusage+ (1−λ) · simtag−overlap, (4.14)

where simusage and simtag−overlap are the usage-based and tag-based similarities for either
user pairs or items pairs, depending on the choice for user-based or item-based filtering. By
varying λ, we can assign more weight to one type of similarity or the other. The optimal λ
value as well as the optimal number of neighbors N were optimized doing parameter sweeps
using our 10-fold cross-validation setup. For each data set, we determined the optimal value
of λ using a parameter sweep, examining all values between 0 and 1 with increments of
0.1. Setting λ to either 0 or 1 corresponds to using the similarities from the TOBCF or the
CF algorithm respectively. Linearly combining the different similarity types is not the only
possible combination approach. However, while more sophisticated feature combination
and fusion approaches have been proposed for collaborative filtering in the past (Wang
et al., 2006a), we leave a more principled combination of usage and tag information for
future work.

We also considered two alternative fusion schemes. In the first, we combined usage-based
similarities from standard CF with the similarities generated for the TIBCF algorithm in
Subsection 4.4.2. The second fusion scheme combines the similarities from the TOBCF al-
gorithm with the TIBCF algorithm, in effect combining the similarities based on tag overlap

Chapter 4. Folksonomic Recommendation 70

and tagging intensity. Preliminary experiments suggested, however, that these two fusion
schemes do not produce any acceptable results. We therefore restricted ourselves to fusing
the usage-based similarities from CF with the tag overlap similarities from TOBCF.

4.4.4 Results

Below we present the results for our three algorithms based on tag overlap (TOBCF), tag-
ging intensity (TIBCF), and similarity fusion (SimFuseCF).

Tag Overlap Similarity Table 4.3 shows the results of the user-based and item-based vari-
ants of the TOBCF algorithm. We consider the best-performing CF runs from Section 4.3
runs as the baseline runs and compare them to the TOBCF runs. What we see in Table 4.3
is that item similarities based on tag overlap work well for item-based filtering, as three of
our four data sets show considerable improvements over the best CF baseline runs. Per-
formance increases range from 27% on BibArt to almost 120% on Delicious, but these are
only statistically significant on the Delicious data set. A first observation is the opposite
trend for user-based filtering, where tag overlap results in significantly worse scores for al-
most all variants on all data sets, with performance decreases ranging from 40% to 63%.
This means that using tag overlap in item-based filtering now makes item-based filtering
outperform user-based filtering on all four data sets. A second observation is that on the
bookmark collections tag overlap performs even worse for user-based filtering than on the
data sets containing scientific articles. The reverse seems to be true for item-based filtering.
It seems that the domain of the social bookmarking website influences the effectiveness of
the TOBCF algorithm.

The results of the different tag overlap metrics tend to be close together and differences
between them are not statistically significant. Even though the best performing metrics are
dependent on the data set, we do see that the metrics operating on the binary vectors from
the UTbinary and ITbinary matrices are among the top performing metrics. It is interesting to
note that although that the runs with idf-weighting tend to perform worst of all five metrics,
the IT-TFIDF-SIM produces the best results on the BibArt collection.

A final observation concerns the number of nearest neighbors N used in generating the rec-
ommendations. In general, the optimal number of neighbors is slightly lower than when
using similarities based on usage data. For the item-based runs on BibBoo and BibArt the
number of neighbors is lower than for user-based which is unexpected, given the neighbor-
hood sizes of regular CF in Table 4.2.

Tagging Intensity Similarity Table 4.4 shows the results of the two user-based and item-
based variants of the k-NN algorithm that use similarities based on tagging intensity. Tag-
ging intensity does not appear to be representative of user or item similarity: 14 out of
16 runs perform worse than the best CF runs on those data sets, but most of them not
significantly. It is interesting to note that tagging intensity similarities do produce small
improvements in MAP scores on the user-based runs on Delicious. If we disregard these
statistically not significant improvements, using tagging intensity as a source of user or item

Chapter 4. Folksonomic Recommendation 71

Table 4.3: Results of the TOBCF algorithm. Reported are the MAP scores as well as the
optimal number of neighbors N . Best-performing tag overlap runs for both user-based and
item-based are printed in bold. The percentage difference between the best baseline CF
runs and the best tag overlap runs are indicated after each filtering type.

Runs
bookmarks articles

BibSonomy Delicious BibSonomy CiteULike
MAP N MAP N MAP N MAP N

Best UB CF run
0.0277È 13 0.0046È 15 0.0865È 4 0.0757È 15
(U-BIN-IDF-SIM) (U-BIN-SIM) (U-BIN-SIM) (U-BIN-IDF-SIM)

UT-JACCARD-SIM 0.0070È 8 0.0015È 11 0.0459È 6 0.0449È 5
UT-DICE-SIM 0.0069Ï 6 0.0007È 6 0.0333Ï 4 0.0439È 2
UT-BIN-SIM 0.0102È 5 0.0017È 11 0.0332Ï 4 0.0452È 3
UT-TF-SIM 0.0069Ï 2 0.0015Ï 25 0.0368È 4 0.0428È 8
UT-TFIDF-SIM 0.0018Ï 6 0.0013Ï 17 0.0169È 2 0.0400È 2
% Change over best UB CF run -63.2% -63.0% -46.9% -40.7%

Best IB CF run
0.0244È 34 0.0027È 25 0.0737È 49 0.0887È 30
(I-BIN-IDF-SIM) (I-BIN-SIM) (I-BIN-IDF-SIM) (I-BIN-IDF-SIM)

IT-JACCARD-SIM 0.0370È 3 0.0083Í 21 0.0909È 6 0.0810È 14
IT-DICE-SIM 0.0317È 2 0.0089Í 25 0.0963È 8 0.0814È 8
IT-BIN-SIM 0.0334È 2 0.0101Í 23 0.0868È 5 0.0779È 10
IT-TF-SIM 0.0324È 4 0.0100Í 11 0.0823È 4 0.0607È 17
IT-TFIDF-SIM 0.0287È 8 0.0058È 7 0.1100È 7 0.0789È 21
% Change over best IB CF run +51.6% +274.1% +49.3% -8.2%

% Change over best CF run +33.6% +119.6% +27.2% -8.2%

similarity decreases performance by around 20% on average. In fact, the performance of
item-based filtering on Delicious is even worse than the popularity-based algorithm.

Table 4.4: Results of the TIBCF algorithm. Reported are the MAP scores as well as the
optimal number of neighbors N . Best-performing tagging intensity runs for each data set
are printed in bold. The percentage difference between the best baseline CF run and the
best CF run with tagging intensity similarities is indicated in the bottom row of the table.

Runs
bookmarks articles

BibSonomy Delicious BibSonomy CiteULike
MAP N MAP N MAP N MAP N

Best CF run
0.0277È 13 0.0046È 15 0.0865È 4 0.0887È 15
(U-BIN-IDF-SIM) (U-BIN-SIM) (U-BIN-SIM) (I-BIN-IDF-SIM)

U-TF-SIM 0.0229È 13 0.0061È 60 0.0711È 11 0.0700È 14
U-TFIDF-SIM 0.0244È 8 0.0052È 45 0.0705È 9 0.0709È 37
I-TF-SIM 0.0179È 21 0.0004È 10 0.0624È 17 0.0774È 34
I-TFIDF-SIM 0.0140È 21 0.0013Ï 10 0.0654È 17 0.0800È 34
% Change -11.9% +32.6% -17.8% -9.8%

Similarity Fusion Table 4.5 shows the results of the experiments with the user-based and
item-based filtering variants of the SimFuseCF algorithm. Fusing the different similarities
together does not unequivocally produce better recommendations. For user-based filtering
we see modest improvements of up to 26% for the two bookmark data sets BibBoo and
Delicious. Similarity fusion, however, does not help us on the BibArt and CiteULike data
sets. For item-based filtering, we see small improvements in MAP scores for two runs,

Chapter 4. Folksonomic Recommendation 72

BibBoo and Delicious after fusing the item-based similarities from the two best component
runs. The other two item-based SimFuseCF runs perform worse than the best component
runs. However, none of the performance increases or almost none of the decreases are
statistically significant. It is interesting to note that in two cases the SimFuseCF algorithm
actually performs worse than both component runs. Apparently, the combined similarities
cancel each other out to a certain extent there.

Finally, when we look at the optimal λ values we see that for user-based filtering the λ
values are closer to 1, while for item-based filtering the λ values are closer to 0. This is
to be expected as it corresponds to assigning more weight to the similarities of the best
performing component run of each fusion pair.

Table 4.5: Results of the SimFuseCF algorithm. Reported are the MAP scores as well as
the optimal number of neighbors N and the optimal value of λ. We report each of the
best performing component runs and print the best-performing SimFuseCF runs in bold
for both user-based and item-based filtering. The percentage difference between the best
component run and the best fused run is indicated in the bottom rows of the two tables.

Runs
bookmarks articles

BibSonomy Delicious BibSonomy CiteULike
MAP N λ MAP N λ MAP N λ MAP N λ

Best UB CF run
0.0277È 13 - 0.0046È 15 - 0.0865È 4 - 0.0757È 15 -

(U-BIN-IDF-SIM) (U-BIN-SIM) (U-BIN-SIM) (U-BIN-IDF-SIM)

Best UB tag run
0.0102È 5 - 0.0017È 11 - 0.0459È 6 - 0.0452È 3 -

(UT-BIN-SIM) (UT-BIN-SIM) (UT-JACCARD-SIM) (UT-BIN-SIM)
User-based fusion 0.0350È 8 0.8 0.0056È 45 0.7 0.0319Ï 8 0.8 0.0554È 25 0.7
% Change +26.4% +21.7% -63.1% -26.8%

Runs
bookmarks articles

BibSonomy Delicious BibSonomy CiteULike
MAP N λ MAP N λ MAP N λ MAP N λ

Best IB CF run
0.0244È 34 - 0.0027È 25 - 0.0737È 49 - 0.0887È 30 -

(I-BIN-IDF-SIM) (I-BIN-SIM) (I-BIN-IDF-SIM) (I-BIN-IDF-SIM)

Best IB tag run
0.0370È 21 - 0.0101È 23 - 0.1100È 5 - 0.0814È 34 -

(IT-JACCARD-SIM) (IT-BIN-SIM) (IT-TFIDF-SIM) (IT-DICE-SIM)
Item-based fusion 0.0348È 15 0.3 0.0102È 25 0.3 0.1210È 14 0.1 0.0791È 28 0.4
% Change -5.9% +1.0% +10.0% -10.8%

4.4.5 Discussion

Below we discuss the experimental results of our three algorithms based on tag overlap
(TOBCF), tagging intensity (TIBCF), and similarity fusion (SimFuseCF).

Tag Overlap Similarity Earlier we saw that the benefits of using tag overlap are depen-
dent on the type of TOBCF algorithm. While user-based TOBCF does not seem to get a boost
from user-user similarities based on tag overlap, item-based TOBCF improves markedly by
using tag overlap between items as its similarity metric.

Why do we see this performance dichotomy? Earlier, in Subsection 4.4.1, we put forward
that the reduction in sparsity from using tag overlap could produce better recommendations
for item-based filtering. On average, the number of tags assigned to an item is 2.5 times

Chapter 4. Folksonomic Recommendation 73

higher than the number of users who have added the item. This means that, on average,
item profile vectors from the IT matrix are less sparse than item profile vectors from the
UI matrix. Using more values in the similarity calculation leads to a better estimate of the
real similarity between two items. We believe this is why using tag overlap works better
for item-based filtering. For user-based TOBCF this difference is not as well-pronounced:
in some data sets users have more items than tags on average, and more tags than items
in other data sets. This explains why we do not see the same performance increase for the
user-based filtering runs based on tag overlap.

We also noted earlier that the performance on the bookmarks data sets shows the strongest
reaction to using tag overlap: item-based TOBCF performs best on the bookmark data sets,
while user-based TOBCF performs worst on them. The explanation for the lower perfor-
mance of user-based TOBCF on bookmarks is that, as we showed earlier, the profiles of
bookmark users are more diverse topically speaking and therefore harder to match against
other profiles. As the tags assigned by the users to their bookmarks are about as numerous
as their items, this does not reduce the sparsity, thereby not providing any help in matching
the users up correctly. For item-based TOBCF, in the bookmarks case the sparsity is reduced
by a factor 3 on average, while in the articles case sparsity is only reduced by a factor of 1.5.
This means that sparsity is reduced more for bookmarks, and subsequently that items can be
matched better on tag overlap in the bookmarks case, thereby improving performance more
than in the article case. In addition, performance on the bookmarks data sets was already
lower, making it easier to achieve a bigger percentage-wise improvement. We do not have a
specific explanation for the particularly large increase in performance of item-based TOBCF
on the Delicious data set. However, it should be noted that even the best scores on Delicious
are still considerably lower than on the other data sets; the size of the Delicious data set
with its magnitude more items makes recommendation difficult, no matter what metrics or
algorithms are used.

Tagging Intensity Similarity We found that the tagging intensity, i.e., the number of tags
users assign to items, is not a good source of user and item similarity. Most of our TIBCF
runs that used tagging intensity similarities performed considerably worse than the baseline
k-NN algorithm that uses transaction data to locate the nearest neighbors. How can we
explain this? The simplest and most likely explanation is the number of tags simply is not
a good predictor for interest in an item, and that the topical overlap between items cannot
be captured by the number of tags assigned to them.

One way of investigating this is by looking at the topical overlap between users and items
as we did in Subsection 4.3.3 using the tags. We assume that, more often than not, a user
will be interested in new items that share some overlap in topics with the items already
owned by that user. If tagging intensity is indeed a good indicator of topical overlap, then
the similarity between two users in tagging intensity should be a good predictor of the
topical similarity between those users, and vice versa. We therefore correlate (1) the cosine
similarity between two users based on the tags they assigned with (2) the cosine similarity
between two users based on how intensively they tagged their items7. What we find is

7Effectively, this means we are correlating the user similarities of the UT-TF-SIM run with the user similarities
of the U-TF-SIM run.

Chapter 4. Folksonomic Recommendation 74

that there is a negligible correlation between these similarities: the correlations range from
-0.017 to 0.076.

We posited earlier that the latent complexity of the items might govern how many tags
are needed to describe them—more complex items might simply require more tags. We
therefore also correlated the item similarities based on tag overlap with the item similarities
based on how intensely they were tagged8. Here again, we found similar, weak correla-
tions between the two similarity sets. These findings lead us to conclude that looking at
tagging intensity is not a good way of locating nearest neighbors in social bookmarking sys-
tems. Finally, it is interesting to note that tagging intensity similarities did produce a small
improvement in MAP scores on the user-based runs on Delicious. We do not have a clear
explanation for this.

Similarity Fusion The results of our SimFuseCF algorithm were not clear-cut: some runs
on some data sets saw an increase in performance, while others saw performance drops,
sometimes even below the scores of the original component runs. User-based SimFuseCF
worked best on the two bookmark data set BibBoo and Delicious. Here, the sum of the
parts is greater than the whole as both usage-based information and tag overlap are best
combined to match users. There appears to be no clear pattern in when similarity fusion
yields improvements and when it does not. From the lack of statistically significant results
we may conclude that similarity fusion is neither an effective nor an efficient method of
recommendation: scores are not improved significantly, which does not warrant the double
effort of calculating two sets of similarities and merging them—computationally the most
expensive part of the k-NN algorithm. We believe this to be because the distributions of the
two set of similarities are too different even after normalization. If the optimal number of
neighbors is very different for the two algorithms using the two sets of similarities, fusing the
similarities themselves does not results in the best of both worlds, but rather a sub-optimal
compromise between the optimal neighborhood sizes.

4.5 Related work

Social bookmarking and social tagging in general are relatively new phenomena and as a
result there is not a large body of related work. We saw earlier in Chapter 2 that the majority
of the literature so far has focused on the information seeking and organization aspects of
tags and on the benefits of tags for information retrieval and Web search. In terms of
recommendation, most of the research efforts have focused on tag recommendation. With
the exception of the 2008 Discovery Challenge, there is also an striking absence of large
scale experimentation and evaluation initiatives such as TREC or CLEF in the field of IR.
This lack of standardized data sets combined with the novelty of social bookmarking makes
for a relatively small space of related work on item recommendation for social bookmarking.
We discuss three different types of related work: graph-based, memory-based, and model-
based recommendation for social bookmarking

8Effectively correlating the item similarities of IT-TF-SIM runs with item similarities of I-TF-SIM runs.

Chapter 4. Folksonomic Recommendation 75

Graph-based Recommendation One of the first approaches to recommendation for social
bookmarking websites was done by Hotho et al. (2006a), who proposed a graph-based
algorithm called FolkRank. They start by constructing an undirected tripartite graph of all
users, items, and tags, and perform the same aggregations over these three dimensions as
we described in Section 4.1 to arrive at the 2D projections UI, UT, and IT. They combine
these into a single square matrix with as many rows as nodes in the original tripartite
graph. Like PageRank (Page et al., 1998), the FolkRank algorithm is based on a random
walk model that calculates the fully converged state transition probabilities by taking a
walk of infinite length. The probabilities then represent the rank-ordering of the users,
items, and tags on popularity. FolkRank also allows for the incorporation of a preference
vector, similar to the teleporting component of PageRank. In this preference vector, specific
users, items, or tags can be assigned a higher weight to generate user- or topic-specific
rankings. They empirically evaluate their algorithm on a self-crawled Delicious data set,
making it difficult to compare with other approaches. Clements et al. (2008a) also proposed
a random walk model for item recommendation. They test their approach on a data set
based on LibraryThing, which includes both tagging and rating information. They construct
a similar matrix like Hotho et al., but include the ratings matrix R from their data set instead
of the UI matrix. They also incorporate self-transition probabilities in the matrix and use
the walk length as an algorithm parameter. We describe this approach in more detail in the
next section when we compare it directly with our own approaches.

Memory-based Recommendation Adaptations of memory-based algorithms that include
information about the tags assigned by users to items have also been proposed. Szomszor
et al. (2007) proposed ranking items by the tag overlap with the active user’s tag cloud
and compare it to popularity-based recommendation. They take on the task of movie rec-
ommendation based on the Netflix data set9 and harvest the tags belonging to each movie
from the IMDB10. Their approach corresponds to calculating the tag overlap on the regular
UT matrix using simUT−cosine and tf·idf weighting. They found that tag overlap outper-
formed popularity-based recommendation. Yin et al. (2007) also calculate direct user-item
similarities in their approach to recommending scientific literature. Nakamoto et al. (2007)
augmented a user-based k-NN algorithm with tag overlap. They calculate the similarities
between users using cosine similarity between the user tag profiles (i.e., simUT−cosine on
the regular UT matrix with tag frequency weighting). They evaluated their approach in
Nakamoto et al. (2008), where they compared it with popularity-based recommendation,
which was outperformed by their tag-augmented approach. In their paper, Tso-Sutter et al.
(2008) also propose a tag-aware k-NN algorithm for item recommendation. In calculating
the user and item similarities they include the tags as additional items and users respectively.
They then calculate cosine similarity on these extended profile vectors and fuse together the
predictions of the user-based and item-based filtering runs. We describe this approach in
more detail in the next section when we compare it directly with our own approaches. Za-
nardi and Capra (2008) propose an approach called Social Ranking for tag-based search
in social bookmarking websites. Inspired by CF techniques, to find content relevant to the
query tags, they first identify users with similar interests to the active users. Content tagged
by those users is scored higher, commensurate with the similarity between users based on

9http://www.netflixprize.com/
10http://www.imdb.com/

http://www.netflixprize.com/
http://www.imdb.com/

Chapter 4. Folksonomic Recommendation 76

cosine similarity of the tag profiles (i.e., simUT−cosine on the regular UT matrix with tag fre-
quency weighting). In addition, they expand the original query tags with related tags to
improve recall. Tag similarity is calculated on the TI matrix using cosine similarity and item
frequency weighting. Their algorithm showed promising performance on a CiteULike data
set compared to popularity-based rankings of content. Finally, Amer-Yahia et al. (2008) ex-
plore the use of item overlap and tag overlap to serve live recommendations to users on the
Delicious website. They focus especially on using the nearest neighbors for explaining the
recommendations: why was a certain item or user recommended?

Model-based Recommendation Symeonidis et al. (2008b) were among the first to pro-
pose a model-based approach that incorporates tagging information. They proposed using
tensor decomposition on the third-order folksonomy tensor. By performing higher-order
SVD, they approximate weights for each user-item-tag triple in the data set, which can then
be used to support any of the recommendation tasks. They evaluated both item and tag
recommendation on a Last.FM data set (Symeonidis et al., 2008b,a). Comparing it to the
FolkRank algorithm (Hotho et al., 2006a), they found that dimensionality reduction based
on tensor decomposition outperforms the former approach. Wetzker et al. (2009) take
a Probabilistic Latent Semantic Analysis (PLSA) approach, which assumes a latent lower
dimensional topic model. They extend PLSA by estimating the topic model from both user-
item occurrences as well as item-tag occurrences, and then linearly combine the output of
the two models. They test their approach on a large crawl of Delicious, and find it signifi-
cantly outperforms a popularity-based algorithm. They also show that model fusion yields
superior recommendation independent of the number of latent factors.

4.6 Comparison to Related Work

While several different classes of recommendation algorithms are reported to have been
modified successfully to include tag, it remains difficult to obtain an overview of best prac-
tices. Nearly every approach uses a different data set, crawled from a different social book-
marking website in a different timeframe. Looking closer, we can also find a large variation
in the way these data sets are filtered on noise in terms of user, item, and tag thresholds, and
the majority of approaches are filtered more strongly than we proposed in Subsection 3.4.1.
There is also a lack of a common evaluation methodology, as many researchers construct
and motivate their own evaluation metric. Finally, with the exception of Symeonidis et al.
(2008b) who compared their approach with FolkRank, there have been no other compar-
isons of different recommendation algorithms on the same data sets using the same metric,
making it difficult to draw any definite conclusions about the algorithms proposed.

In this thesis, we attempt to alleviate some of these possible criticisms. With regard to the
data sets, we have enabled the verification of our results by selecting publicly available data
sets. In addition, we follow the recommendations of Herlocker et al. (2004) in selecting
the proper evaluation metric. In this section, we will compare two of the state-of-the-art
graph-based CF (GBCF) approaches with our own TBCF approaches on our data sets with
the same metrics to properly compare the different algorithms.

Chapter 4. Folksonomic Recommendation 77

In Subsections 4.6.1 and 4.6.2 we describe two GBCF algorithms in more detail. We present
the experimental results of the GBCF algorithms in Subsection 4.6.3, and contrast them
with the results of our best-performing TBCF algorithms. We discuss this comparison in
Subsection 4.6.4.

4.6.1 Tag-aware Fusion of Collaborative Filtering Algorithms

The first GBCF approach to which we want to compare our work is that of Tso-Sutter et al.
(2008). In their paper, they propose a tag-aware version of the standard k-NN algorithm for
item recommendation on social bookmarking websites. We elect to compare our work to this
algorithm, because it bears many similarities, yet calculates the user and item similarities in
a different manner. Their approach consists of two steps: (1) similarity calculation and (2)
similarity fusion. In the first step, they calculate the similarities between users and between
items based on the R matrix, but extend this user-item matrix by including user tags as items
and item tags as users. Effectively, this means they concatenate a user’s profile vector −→uk

with that user’s tag vector
−→
dk , which is taken from UTbinary. For item-based filtering the item

profile vector
−→
il is extended with the tag vector for that item

−→
fl , also taken from ITbinary.

Figure 4.4 illustrates this process.

User‐based 
filtering

Item‐based 
filtering

R UT

ITT

Dusers

items
tags

items

items

tags

users

tags

Figure 4.4: Extending the user-item matrix for tag-aware fusion. For user-based filtering,
the UT matrix is appended to the normal UI matrix so that the tags serve as extra items to
use in calculating user-user similarity. It does so by including user tags as items and item
tags as users. For item-based filtering, the transposed IT matrix is appended to the normal
UI matrix so that the tags serve as extra users to use in calculating item-item similarity.
Adapted from Tso-Sutter et al. (2008).

By extending the user and item profile vectors with tags, sparsity is reduced when calculat-
ing the user or item similarities, compared to using only transaction data from R to calculate
the similarities. Adding the tags also reinforces the transaction information that is already
present in −→uk and

−→
il . At the end of this phase they use the k-NN algorithm with cosine sim-

ilarity to generate recommendations using both user-based and item-based filtering. When
generating recommendations, the tags are removed from the recommendation lists; only

Chapter 4. Folksonomic Recommendation 78

items are ever recommended. While this is related to our idea of similarity fusion, it is not

completely the same. We fuse together the similarities calculated on the separate −→uk and
−→
dk

vectors in the case of, for instance, user-based filtering11. Tso-Sutter et al. first fuse together

the −→uk and
−→
dk vectors and then calculate the similarity between profile vector pairs. The

difference is identical for item-based filtering.

In the second phase of their approach, similarity fusion, Tso-Sutter et al. (2008) fuse the
predictions of the user-based and item-based filtering algorithms together, to try to effec-
tively capture the 3D correlations between users, items, and tags in social bookmarking data
sets. Their fusion approach was inspired by Wang et al. (2006a), who proposed two types
of combinations: (1) fusing user- and item-based predictions, and (2) using the similar item
ratings generated by similar users. Tso-Sutter et al. (2008) only considered the first type of
combinations as the second type did not provide better recommendations for them. We also
employed this restriction. They fused the user- and item-based predictions by calculating
a weighted sum of the separate predictions. In our comparison experiments, we evalu-
ated both the fused predictions as well as the separate user-based and item-based filtering
runs using the extended similarities. We refer to the latter two runs as U-TSO-SUTTER-SIM

and I-TSO-SUTTER-SIM. The optimal combination weights were determined using our 10-fold
cross-validation setup. Tso-Sutter et al. (2008) tested their approach on a self-crawled data
set from Last.FM against a baseline k-NN algorithm based on usage similarity. They reported
that in their experiments they found no improvements in performance using these extended
similarities in their separate user-based and item-based runs. They did report significant
improvements of their fused approach over their baseline runs, showing that their fusion
method is able to capture the 3D relationship between users, items, and tags effectively. We
refer the reader to Tso-Sutter et al. (2008) for more details about their work.

4.6.2 A Random Walk on the Social Graph

The second GBCF approach against which we wish to compare our work is the random
walk method of Clements et al. (2008a). They propose using a personalized Markov ran-
dom walk on the tripartite graph present in social bookmarking websites. While others
have used random walks for recommendation in the past (Aggarwal et al., 1999; Yildirim
and Krishnamoorthy, 2008; Baluja et al., 2008), applying them to the tripartite social graph
is new. Furthermore, the model allows for the execution of many different recommenda-
tion tasks, such as recommending related users, interesting tags, or similar items using the
same elegant model. Clements et al. (2008a) represent the tripartite graph of user, items,
and tags, created by all transactions and tagging actions, as a transition matrix A. A ran-
dom walk is a stochastic process where the initial condition is known and the next state is
given by a certain probability distribution. A contains the state transition probabilities from
each state to the other. A random walk over this social graph is then used to generate a
relevance ranking of the items in the system. The initial state of the walk is represented in
the initial state vector −→v 0. Multiplying the state vector with the transition matrix gives us
the transition probabilities after one step; multi-step probabilities are calculated by repeat-
ing −→v n+1 =

−→v n · A for the desired walk length n. The number of steps taken determines

11I.e. the similarities from the U-BIN-SIM and UT-BIN-SIM runs.

Chapter 4. Folksonomic Recommendation 79

the influence of the initial state vector versus the background distribution: a longer walk
increases the influence of A. A walk of infinite length (−→v ∞) results in the steady state dis-
tribution of the social graph, which reflects the background probability of all nodes in the
graph. This is similar to the PageRank model (Page et al., 1998) for Web search and similar,
but not identical, to the FolkRank algorithm (Hotho et al., 2006a). The transition matrix
A is created by combining the usage and tagging information present in the R, UT, and IT
matrices into a single matrix. In addition, Clements et al. (2008a) include the possibility of
self-transitions, which allows the walk to stay in place with probability α ∈ [0, 1] . Figure
4.5 illustrates how the transition matrix A is constructed.

α ∙ S
(1 ‐ α) ∙ 
½ ∙ R

(1 ‐ α) ∙ 
½ ∙ UT

(1 ‐ α) ∙ 
½ ∙ R

α ∙ S
(1 ‐ α) ∙ 
½ ∙ IT

(1 ‐ α) ∙ 
½ ∙ UT

(1 ‐ α) ∙ 
½ ∙ IT

α ∙ S

uk tm

item state probabili6es

=  A

=  v

=  v

0

n

T T

T

1 ‐ θ θ

USERS

ITEMS

TAGS

USERS ITEMS TAGS

Figure 4.5: The transition matrix A is constructed by combining the R, UT, and IT matrices
and their transposed versions. Self-transitions are incorporated by super-imposing a diag-
onal matrix of ones S on the transition matrix, multiplied by the self-transition parameter
α. In the initial state vector the θ parameter controls the amount of personalization for
the active user. The highlighted part of the final probability vector −→v n after n steps are the
item state probabilities; these are the final probabilities that we rank the items on for the
active users.

A is a row-stochastic matrix, i.e., all rows of A are normalized to 1. Clements et al. (2008a)
introduce a third model parameter θ that controls the amount of personalization of the
random walk. In their experiments with personalized search, two starting points are as-
signed in the initial state vector: one selecting the user uk and one selecting the tag tm

they wish to retrieve items for. The θ parameter determines the influence of the personal
profile versus this query tag. In our case, we are only interested in item recommendation

Chapter 4. Folksonomic Recommendation 80

based on the entire user profile, so we do not include any tags in the initial state vector.
This corresponds to setting θ to 0 in Clements et al. (2008a). In addition, we set α, the
self-transition probability, to 0.8 as recommended by Clements et al.. We optimize the walk
length n using our 10-fold cross-validation setup. After n steps, the item ranking is produced
by taking item transition probabilities from −→v n for the active user (−→v n(K + 1, . . . K + L))
and rank-ordering them by probability after removal of the items already owned by the ac-
tive user. An advantage of the random walk model of Clements et al. (2008a) is that it can
support many different recommendation tasks without changing the algorithm. Supporting
tag recommendation instead of item recommendation, for instance, can be done by simply
selecting a user and an item in the initial state vector, and then ranking the tags by their
probabilities from the final result vector. Item recommendation for entire user groups could
also be supported by simply selecting the group users in the initial state vector, and then
ranking by item probabilities.

Clements et al. (2008a) tested their approach on a data set based on LibraryThing12, which
includes both tagging and rating information. In addition, they artificially constructed a nar-
row version of this LibraryThing folksonomy to compare the effectiveness of their method
on collaborative and individual tagging systems. They compared different parameter set-
tings of their random walk algorithm and found that, because of the lower density of the
narrow folksonomy, it is difficult to retrieve and recommend items in an individual tagging
system. We refer the reader to Clements et al. (2008a) for more details about their work.

4.6.3 Results

Table 4.6 shows the results of the tag-aware fusion and random walk algorithms on our
four data sets. The best-performing CF runs are also listed in the table. What we see, is
that of the two runs using the extended user-item matrices for similarity comparison, I-TSO-
SUTTER-SIM performs better than U-TSO-SUTTER-SIM. While U-TSO-SUTTER-SIM performs better
than using simple usage-based similarities from Section 4.3 on three of the data sets, it does
not improve upon our best CF runs. The I-TSO-SUTTER-SIM, however, does: the extended
item similarities outperform the standard tag overlap similarities on every data set. The
performance increases there range from 16% to 37%.

Fusing the user- and item-based predictions produces the best results so far. For all four
data sets, the fused predictions improve performance by 18% to 64%, depending on the
data set. Performance on CiteULike is improved significantly. For most of the data sets,
the optimal λ assigns more weight to the item-based predictions, which also yield the best
results on their own. The differences between the fused run and the I-TSO-SUTTER-SIM run
are not statistically significant.

The random walk model does not fare as well on any of our four data sets: performance is
lower than our best CF run and it is especially bad on the Delicious data set. The random
walk method does outperform the popularity-based baseline on the BibBoo, BibArt, and
CiteULike data sets.

12http://www.librarything.com/

http://www.librarything.com/

Chapter 4. Folksonomic Recommendation 81

Table 4.6: Results of the tag-aware and random walk approaches. Reported are the MAP
scores as well as the optimal number of neighbors N . For the random walk model, N
corresponds to the walk length n. In addition, we report the best-performing CF runs
using usage-based similarity and tag overlap similarity. The best-performing runs for each
data set are printed in bold. The percentage difference between the best approaches from
related work and our best CF runs is indicated in the bottom rows of the two tables.

Runs
bookmarks articles

BibSonomy Delicious BibSonomy CiteULike
MAP N MAP N MAP N MAP N

Best CF run
0.0370È 3 0.0101È 23 0.1100È 7 0.0887È 30

(IT-JACCARD-SIM) (IT-BIN-SIM) (IT-TFIDF-SIM) (I-BIN-IDF-SIM)
U-TSO-SUTTER-SIM 0.0303È 13 0.0057È 54 0.0829È 13 0.0739Ï 14
I-TSO-SUTTER-SIM 0.0468È 7 0.0125È 13 0.1280È 11 0.1212Î 10
Tag-aware fusion 0.0474È λ = 0.5 0.0166È λ = 0.3 0.1297È λ = 0.2 0.1268Î λ = 0.2
Random walk model 0.0182È 5 0.0003È 3 0.0608È 8 0.0536È 14
% Change +28.1% +64.4% +17.9% +43.0%

4.6.4 Discussion

According to our results on the four data sets, extending the user-item matrix by includ-
ing user tags as items and item tags as users is the superior way of calculating user and
item similarities. Both for user-based and item-based filtering, combining usage and tag
information before computing the similarities outperforms using just one of those similarity
sources. We believe sparsity reduction to be a main reason for this. As user profile vectors
increase in length, they also gain more non-zero elements. The density of the user profile
vectors increases by 54% for the Delicious data set and by approximately 6% for the other
data sets. This means that, on average, larger parts of the vectors can be matched against
each other in the user similarity calculation, leading to more accurate user similarities. For
item-based filtering, we see the same thing happening, leading to improved performance
over the separate CF or TOBCF runs. As for the item-based runs with tag overlap, richer
item descriptions lead to better matched items and therefore higher quality recommenda-
tions. These results are different from those reported by Tso-Sutter et al. (2008), who did
not find CF with their extended similarities to outperform the standard CF algorithm. This
effect might have been specific to their data set.

Fusing the user-based and item-based predictions leads to the best results, superior to any
of our own CF-based runs. This is to be expected, as it combines the best of both worlds.
We can confirm with our experiments that tag-aware fusion of CF algorithms is able to
capture the three-dimensional correlations between users, items and tags. Although the tag-
aware fusion method does not significantly improve over its component runs, it does provide
consistent improvements. An interesting question is why our own proposed SimFuseCF
algorithm did not show such consistent improvements. We believe this to be because the
distributions of the two set of similarities were too different even after normalization. If
the optimal number of neighbors is very different for the two algorithms using the two
sets of similarities, fusing the similarities themselves does not result in the best of both
worlds, but rather a sub-optimal compromise between the optimal neighborhood sizes. In
Chapters 5 and 6 we will take another look at other possibilities for combining different
recommendation techniques.

Chapter 4. Folksonomic Recommendation 82

The random walk method is not competitive on our data sets with our best CF runs or with
the tag-aware fusion method. We can think of several reasons for this. First, we performed
more strict filtering our of data sets than Clements et al. (2008a) did, and the higher density
of their LibraryThing data set could have led to better results. For instance, we removed
only untagged posts from our crawls, whereas Clements et al. required all tags to occur at
least five times. Increasing the density of our data sets through stricter filtering is likely
to improve the results of all the approaches discussed so far. A second possible reason for
the poor performance is the lack of explicit ratings. While Clements et al. have explicit,
five-star ratings in their LibraryThing data set, we only have implicit transaction patterns to
represent item quality. However, in their work they did not find any significant differences
when using the ratings from the UI matrix. Finally, we did not perform extensive parameter
optimization: we only optimized the walk length n, but not the self-transition probability α,
which could have positively influenced performance on our data sets.

The random walk method performs much better on the article data sets than on the book-
mark data sets. We believe this to be because the BibArt and CiteULike data sets comprise a
specific domain of scientific articles. We reported earlier that the user profiles of BibArt and
CiteULike users are more homogeneous than the bookmark users, whose profiles reflect a
larger variety of topics. The larger number of tags per user on the bookmark data sets, mean
that the random walk has more nodes it can visit. This means the transition probabilities
are spread out over more nodes, making it more difficult to distinguish between good and
bad items for recommendation. This effect is especially pronounced on the Delicious data
set, as is evident in the significantly lower MAP score there. Narrower domains such as sci-
entific articles, books, or movies lead to a more compact network and make it easier for the
random walk model to find the best related content. The data set used by Clements et al.
(2008a) has a similarly ‘narrow’ domain as our BibArt and CiteULike data sets, making it
easier to find related content and generate recommendations.

4.7 Chapter Conclusions and Answer to RQ 1

Collaborative filtering algorithms typically base their recommendations on transaction pat-
terns such as ratings or purchases. In a social bookmarking scenario, the broad folksonomy
provides us with an extra layer of information in the form of tags. In this chapter we focused
on answering our first research question.

RQ 1 How can we use the information represented by the folksonomy to sup-
port and improve recommendation performance?

We started our exploration by comparing a popularity-based algorithm with the user-based
and item-based variants of the standard nearest-neighbor CF algorithm. The only informa-
tion used here consisted of the user-item associations in the folksonomy, and these exper-
iments showed that personalized recommendations are preferable over ranking items by
their overall popularity.

Chapter 4. Folksonomic Recommendation 83

We then extended both nearest-neighbor CF variants with different tag similarity metrics,
based on either the overlap in tags (TOBCF) or the overlap in how intensely items were
tagged (TIBCF). We found that the performance of item-based filtering can be improved by
using the item similarities based on the overlap in the tags assigned to those items. The
reason for this is reduced sparsity in the item profile vectors; something we did not find in
user-based filtering, which as a result did not benefit from using tag similarity. We found
that bookmark recommendation was affected more strongly than reference recommenda-
tion. Using tagging intensity as a source of user or item similarity did not produce good
recommendations, because the amount of tags a user assigns to an item is not correlated
with its perceived value. We also examined merging usage-based and tag-based similarities
together to get the best of both worlds. However, the results of this SimFuseCF algorithm
were inconclusive, probably due to the different distributions of the sets of similarities.

To promote repeatability and verifiability of our experiments, we used publicly available
data sets, and we compared our algorithms with two state-of-the-art GBCF algorithms. The
first algorithm, based on random walks over the social graph, performed worse than our
best tag-based approaches. The second approach was a tag-aware k-NN algorithm which
merged usage and tag data before the similarity calculation instead of after. By combining
two different representations and combining the results of two different algorithms, this
approach outperformed our TOBCF, TIBCF, and SimFuseCF algorithms. From these results
we may conclude that tags can be used successfully to improve performance, but that usage
data and tagging data have to be combined to achieve the best performance.

C
H

A
P

T
E

R 5
EXPLOITING METADATA FOR

RECOMMENDATION

Social bookmarking services offer their users the possibility to annotate the content of their
items with metadata. The extent of this annotation is largely dependent on the domain and
the items being annotated. Services such as Delicious typically allow users to add metadata
such as titles and descriptions to their Web bookmarks. Social reference managers reflect the
more complex creation and publication process of scientific papers; CiteULike for instance
allows its users to add all kinds of citation-related metadata such as author information,
publication venue, and abstracts. In this chapter we investigate the role that metadata can
play in recommending interesting bookmarks or references as formulated in our RQ 2.

RQ 2 How can we use the item metadata available in social bookmarking sys-
tems to provide accurate recommendations to users?

This general research question gives rise to two more specific subquestions.

RQ 2a What type of metadata works best for item recommendation?

RQ 2b How does content-based filtering using metadata compare with folk-
sonomic recommendations?

To answer these three questions, we propose and evaluate two different approaches to using
item metadata. The standard method for using metadata is content-based filtering, which
focuses on representing the content in a system and then learning a profile of the user’s
interests. Subsequently, the content representations are matched against the user profile to
find the items that are most relevant to that user. In our content-based filtering approach
we propose matching the metadata assigned by active users directly with the metadata of
all unseen items in a single step. Another perspective on exploiting the metadata is to see it
as yet another source for calculating user and item similarities in addition to the transaction

85

Chapter 5. Exploiting Metadata for Recommendation 86

patterns from Chapter 4. We can then plug the newly calculated user and item similarities
into a standard Collaborative Filtering (CF) algorithm. The resulting algorithm is a hybrid
of CF and content-based filtering, and we refer to this perspective as hybrid filtering.

Chapter 5 is organized as follows. In Section 5.1 we start by describing the metadata avail-
able in our data sets. We categorize the different metadata fields according to the function
they perform in describing the items in our data sets. Section 5.2 discusses our different
approaches to exploiting metadata for recommendation in more detail. We compare the
results of these different approaches in Section 5.3. Section 5.4 discusses the related work,
and we conclude this chapter in Section 5.5.

5.1 Contextual Metadata in Social Bookmarking

The type of metadata used to annotate content in social bookmarking systems can vary
greatly with the domain used, its conventions, and between individual social bookmarking
systems. This variability is also reflected in our four data sets. The two data sets dealing
with Web bookmarks contain only four different metadata fields, DESCRIPTION, TAGS, TITLE,
and URL—whereas the two data sets that cover scientific articles reflect the variety inherent
their the more complicated process of creation. The BibArt and CiteULike data sets offer
24 and 27 different metadata fields respectively. Table 5.1 lists the different metadata fields
we were able to obtain for our four data sets (see also Section 3.3). In the experiments
described in this chapter, we have included the tags assigned to an item as an additional
metadata field. Since we expect that the different metadata fields vary in how benefi-
cial they are to recommendation performance, we would like to determine which (sets of)
metadata fields contribute most to improving performance. For structuring our research,
we divide the metadata into two different groups: item-intrinsic metadata and item-extrinsic
metadata.

Item-intrinsic metadata fields relate directly to the content of the item being annotated.
Three of the most representative examples include TITLE, DESCRIPTION, or ABSTRACT, all of
which partly describe the content of the item. Other fields, such as AUTHOR and JOURNAL
can also be seen as intrinsic to the item and its creation. The intuition behind assigning
metadata fields to the item-intrinsic category is that these fields can be used as stand-alone
sources for recommending other content. For instance, given a certain paper from a user’s
profile, papers with similar abstracts, papers written by the same author, or papers published
at the same workshop are likely to be relevant recommendations.

In contrast, item-extrinsic metadata fields—such as PAGES, MONTH, or ENTRYTYPE—cannot
be used to directly generate appropriate recommendations. We define extrinsic metadata as
administrative information that could play a supporting role in generating recommendation,
but never serve as a stand-alone source. For example, that fact that a paper was published in
the same month or allocated to the same pages in some proceedings does not mean that all
other papers published in March or on pages 17 through 24 are relevant to the user as well.
The exact categorization of metadata fields into these two categories is system-dependent
and depends largely on the usage of the different fields. However, we believe that every

Chapter 5. Exploiting Metadata for Recommendation 87

data set is likely to have metadata fields that fall into one of these two categories, and that
classifying them as such is relatively easy, regardless of the domain.

Table 5.1 gives an overview of how we assigned the metadata fields available to us to the
different classes. We will use this categorization to guide the experiments in the rest of
this chapter, and define different subsets of our data based on this dichotomy. We will
run experiments using only the combination of all intrinsic metadata fields, and perform
separate runs for each of the intrinsic fields individually to investigate their contribution.
In addition, we will run experiments with the combined set of all intrinsic and extrinsic
metadata fields. Because of the supporting nature of the extrinsic metadata, we do neither
investigate the stand-alone usage of this subset, nor do we examine the influence of the
extrinsic metadata fields separately.

Table 5.1: Metadata categorization and distribution over the four data sets at the post,
item, and user level. Numbers in the table indicate the percentage of posts, items, or users
that have a value assigned for this field. The top half of the table lists the intrinsic metadata
fields and the bottom half the extrinsic metadata fields.

Metadata field
bookmarks articles

BibSonomy Delicious BibSonomy CiteULike
Post Item User Post Item User Post Item User Post Item User

All intrinsic fields 98.4 100 100 98.4 100 100 98.4 100 100 98.4 100 100
ABSTRACT - - - - - - 10.4 13.8 80.2 66.4 67.7 99.8
AUTHOR - - - - - - 95.3 96.8 100 97.5 98.9 100
BOOKTITLE - - - - - - 38.9 40.2 92.2 13.5 13.4 67.5
DESCRIPTION 28.8 48.8 90.1 14.2 19.8 79.9 48.4 80 73.1 - - -
EDITOR - - - - - - 17 19.6 90.4 1.3 1.4 33.4
JOURNAL - - - - - - 34.8 37 96.4 65.4 67.8 98.9
NOTE - - - - - - 2.7 3.9 62.9 - - -
SERIES - - - - - - 4.7 5.3 68.3 0.3 0.4 11.9
TAGS 98.4 100 100 98.4 100 100 98.4 100 100 98.4 100 100
TITLE 98.4 100 100 98.4 99.9 100 98.4 100 100 98.4 100 100
URL 97 98.2 100 98.4 100 100 25 29.8 91.6 95.9 97 100
All extrinsic fields - - - - - - 98.4 100 100 98.4 100 100
ADDRESS - - - - - - 25.5 29.9 94.6 38.2 37.2 94.2
CHAPTER - - - - - - 0.8 1.0 23.4 0.1 0.1 4.1
DAY - - - - - - 0.5 0.6 24.0 - - -
EDITION - - - - - - 1.5 1.9 43.7 0.1 0.1 6.2
ENTRYTYPE - - - - - - 100 100 100 100 100 100
HOWPUBLISHED - - - - - - 2.4 4.0 52.1 9.0 8.2 52.5
INSTITUTION - - - - - - 5.3 5.7 64.7 0.5 0.5 19.1
MONTH - - - - - - 15.4 17.2 90.4 62.6 60.5 99.5
NUMBER - - - - - - 20.7 21.9 93.4 55.6 56.4 98.6
ORGANIZATION - - - - - - 0.7 1.1 40.1 0.3 0.3 11.6
PAGES - - - - - - 54.9 57.5 98.8 67.4 68.5 98.7
PUBLISHER - - - - - - 41.6 44.4 97.6 32.7 31.1 95.6
SCHOOL - - - - - - 2.3 2.4 45.5 0.2 0.3 10.5
TYPE - - - - - - 1.4 1.6 40.1 0.0 0.0 0.4
VOLUME - - - - - - 36.6 38.5 97.0 60.6 61.9 98.9
YEAR - - - - - - 94.1 95.0 100 93.6 93.5 100

The numbers in the columns in Table 5.1 denote what percentage of the posts, items, and
users have a value assigned to a particular metadata field. For instance, only 10.4% of the
post in the BibArt data set were assigned an ABSTRACT. At the item level this increases to
13.8%, whereas 80.2% of all users have added at least one ABSTRACT to one of their posts.
We report two observations here that give more insight into how users employ metadata
to describe their content. We also conjecture how these observations could influence item
recommendation based on metadata, and revisit these observations later.

Chapter 5. Exploiting Metadata for Recommendation 88

First, going to a higher level of granularity typically decreases the sparsity. While a user
might not assign a value to each metadata field for each of his posts, many users do so for at
least one of their posts. The only two fields that have a value for every single post in all four
data sets are TITLE and TAGS1 It is interesting to note that only a minority of the posts have
been assigned descriptions, but most users have done so for at least one of their items. The
decrease in sparsity at higher levels of granularity level could imply that more fine-grained
representations, such as a representation at the post level, could make the matching process
more difficult because of missing data.

A second observation is that the overall usage rate of the different fields varies strongly
between fields and data sets. Some of item-intrinsic fields are only very sparsely filled at
the post and item level, such as SERIES, EDITOR, and BOOKTITLE, suggesting that recommen-
dation based solely on these fields is likely to lead to a lack of accuracy and coverage. We
see the same variation in sparsity for the extrinsic metadata fields, but this is not likely to
lead to a lack of coverage since the extrinsic fields will only be used in combination with the
intrinsic fields.

5.2 Exploiting Metadata for Item Recommendation

The presence of rich metadata offers many different possibilities for improving the recom-
mendation performance. Metadata could, for instance, be used for re-ranking purposes or
incorporated as priors. Certain metadata fields also offer the possibilities of exploring addi-
tional link graphs for recommendation, such as author or citation networks. In this chapter
we focus on two specific methods of using the metadata to aid the recommendation process:
content-based filtering and hybrid filtering. We discuss them below in Subsections 5.2.1 and
5.2.2 respectively. Both methods comprise a shared similarity matching step; we describe
this similarity matching in more detail in Subsection 5.2.3. We conclude this section in
Subsection 5.2.4 by describing which combinations of metadata fields we experiment with.

5.2.1 Content-based Filtering

The focus of content-based filtering for social bookmarking is on properly representing the
content in our social bookmarking data sets. Based on these representations our aim is
to construct an interest profile of an active user, and then use this profile to rank-order
the unseen items by similarity to the profile, thereby approximating possible interest in
those items. We propose two different algorithms for content-based filtering: profile-centric
matching and post-centric matching. The difference between the two algorithms is the level
of aggregation. We discuss both algorithms below and illustrate them by means of the same
toy example for the sake of clarity.

Profile-centric Matching The profile-centric matching algorithm consists of two steps when
generating recommendations for an active user: (1) generating collated user and item pro-
files, and (2) matching the active user’s profiles against the item profiles of the unseen items.

1The latter is because we filtered out all untagged content, cf. Subsection 3.4.1.

Chapter 5. Exploiting Metadata for Recommendation 89

In the first step, we start by collating all of the user’s assigned metadata into a single user
profile. The intuition here is that by aggregating all of the metadata assigned by the user
we can completely capture his interests. Similarly, we construct item profiles that capture
all of the metadata assigned to those items by all users in the training set.

The second step consists of matching the active user’s profile against the item profiles on
similarity to produce a ranking of all items. Items that have been assigned metadata that
is similar to the metadata used by an active user to describe his items are likely to be
good matches and thus good recommendations for that active user. After removing the
items already in the active user’s profile, we are left with the final rank-ordered list of
recommendations. Figure 5.1 illustrates the profile-centric matching algorithm.

Training item profilesAc2ve user profiles

Profile‐centric matching

similarity
matching1D 2

3 A C

5 B C

4 C

test pairstraining pairs

1

A

2

A

3

A

2

B

5

B

1

C

3

C

4

C

5

C

1

D

2

D

3

D

4

D

Figure 5.1: Visualization of our profile-centric matching algorithm for item recommenda-
tion. In the profile-centric approach, we directly match the active user’s profile against the
item profiles with the purpose of ranking the items in order of metadata similarity.

The bottom half of Figure 5.1 visualizes our toy data set with four users and five items.
The user-item pairs in this toy data set have been divided into a training set and a test
set. We have only one active user, D, for whom we are trying to predict items 3 and 4 as
interesting. Using the profile-centric matching algorithm, we first build up a user profile for
D that contains all of the metadata that D has added so far (items 1 and 2). Then the item
profiles are built up for the items unseen by D, i.e., items 3, 4, and 5. The profile of D is
then matched against item profiles 3, 4, and 5 to determine which of the items show the
greatest textual match in metadata. We explain this similarity matching in more detail in
Subsection 5.2.3.

A potential problem of the profile-centric matching algorithm is that by aggregating indi-
vidual posts into high-level profiles we risk sacrificing precision for recall. Active users with
a large number of items are likely to contain metadata for many different topics. With
more and more different topics (and thus terminology) are covered by a profile, we can
also expect a greater number of user (or item) profiles to partially match it. This is likely
to increase recall, but could also reduce precision by producing false positives. At a certain

Chapter 5. Exploiting Metadata for Recommendation 90

profile size nearly every other profile will match at least some small part of the active user’s
profile, making it harder to find the best neighbors for that user.

Post-centric Matching Our second content-based filtering algorithm, post-centric match-
ing, operates at the level of individual posts instead of a higher level of aggregation. This
could potentially reduce the influence of topical noise on the matching process when large
quantities of metadata are aggregated2. The post-centric matching algorithm consists of
three steps when generating recommendations for an active user. In the first step, we gen-
erate representations of all posts in the data set. We populate these representations with
the metadata assigned to a specific post.

The second step then consists of matching each of the active user’s posts separately against
all the other posts of unseen items in the training set. This similarity matching is described
in in more detail in Subsection 5.2.3. The second step leads to a list of matching posts in
order of similarity for each of the active user’s posts. Since the same item could have been
added by multiple users, it is possible that the same item occurs multiple times in the ranked
list of posts.

This leads us to the third step of post-centric matching: aggregating the ranked lists of posts
into a single list of recommended items for the active user. To this end, we start by normal-
ize the original similarity scores simoriginal, as retrieval scores are not directly comparable
between runs (Lee, 1997). We normalize simoriginal into [0, 1] using the maximum and
minimum similarity scores simmax and simmin using the following formula from Lee (1997):

simnorm =
simoriginal− simmin

simmax − simmin
. (5.1)

There are different methods for combining the different results lists into a single list of
recommended items. Two examples include calculating the average score for each item
or summing the different scores each item receives from each post it was retrieved from.
Preliminary experiments with combination methods showed that a third method, calculat-
ing a rank-corrected sum of similarity scores for each item, gave the best performance. This
means that if an item occurs many times it increases the odds of being recommended. At the
same time, items that are recommended hundreds of times but with very low scores do not
dominate the rankings unfairly. The final list of recommendations ranks all unseen items
by their rank-corrected score score(i) for an item i, calculated according to the following
formula:

score(i) =
∑ simnorm(i)

log(rank(i)) + 1
. (5.2)

After removing the items already in the active user’s profile, we are left with the final rank-
ordered list of recommendations. Figure 5.2 illustrates the first two steps of the post-centric

2In contrast, having considerably less metadata when matching the representations could also result in more
false negatives. Our evaluation will have to determine the effect of the different aggregation levels.

Chapter 5. Exploiting Metadata for Recommendation 91

matching algorithm using the same toy data set as in Figure 5.2. First, the post represen-
tations are generated by the algorithm. Then, in the second step, each of user D’s training
posts is matched against all other, unseen posts. First, D’s post of item 1 is matched against
all other posts: user A’s item 2 post, user A’s item 3 post, user B’s item 2 post, and so on.
This results in a ranked lists of posts which serves as input to the third step of post-centric
matching. The same post matching process then takes place for user D’s post of item 2,
again resulting in a ranked list of posts.

Training postsAc.ve user's posts

(b) post‐centric matching

similarity
matching

1

1

1

2

. . .

D

D

D

D

2

3

2

2

. . .

A

A

B

A

test pairstraining pairs

1

A

2

A

3

A

2

B

5

B

1

C

3

C

4

C

5

C

1

D

2

D

3

D

4

D

Figure 5.2: Visualization of our post-centric matching algorithm for item recommenda-
tion. In the post-centric approach, we match metadata at the post level with the purpose
of locating the posts most similar to those of the active user in terms of metadata. The
individual recommendations are then aggregated into a unified list.

5.2.2 Hybrid Filtering

In addition to focusing solely on using the metadata for recommendation, we also con-
sider a hybrid approach that joins content-based filtering and CF. By combining these two
techniques, we hope retain the best elements from both techniques. Combining the sepa-
rate approaches can help diminish their individual shortcomings, and thus produce a more
robust system. In our hybrid filtering approach we view metadata in social bookmarking sys-
tems as another source of information for locating the nearest neighbors in CF algorithms.
Analogous to the CF algorithm described in Section 4.3, hybrid filtering also comes in two
variants: (1) user-based hybrid filtering and (2) item-based hybrid filtering.

Instead of only looking at the overlap in items that two users (or two items) have in com-
mon when calculating user (or item) similarities, we can use the overlap in the metadata
applied to items to determine the most similar neighbors. For the user-based hybrid fil-
tering, for instance, users that describe their profile items using the same terminology are

Chapter 5. Exploiting Metadata for Recommendation 92

likely to share the same interests, making them a good source of recommendations. This
is similar to the way we used the tag clouds of users to calculate similarity between users
in the user-based TOBCF algorithm in Chapter 4. In fact, TOBCF could also be considered
to be a hybrid filtering approach, combining tag overlap with CF. In this subsection, we
extend this approach to all metadata assigned to bookmarks or references. The user and
item similarities we derive in this way are then plugged into the standard memory-based
CF algorithms as described in Section 4.3. The resulting algorithm is a hybrid of CF and
content-based filtering.

User-based hybrid filtering User-based hybrid filtering is the first variant of hybrid filter-
ing. Analogous to the CF algorithm described in Section 4.3, it consists of two steps: (1)
calculating the most similar neighbors of the active user, and (2) using those neighbors to
predict item ratings for the active user. The second step is performed in the same manner
as described earlier in Subsection 4.3.1.

As in the previous section, we approach the first step from an information retrieval per-
spective and calculate the textual similarities between users or items. For each user we
generate user profile representations, and then retrieve the most relevant user profiles for
all of the active users. These representations are constructed as follows. All of the meta-
data text of a user’s posts is collated into a single user profile representation for that user.
Figure 5.3 illustrates the first step in user-based hybrid filtering using the same toy data set
from Subsection 5.2.1. In the first step, the user profiles are generated for all of the users.
For user C, for instance, this means concatenating all the metadata assigned by C to items
1, 3, 4, and 5. After constructing the user profiles, the user similarities are then calculated
as described in Subsection 5.2.3.

Training user profilesAc1ve user profiles

1D 2

User‐based hybrid filtering

similarity
matching B

A

C

2 5

1 2 3

1 3 4 5

test pairstraining pairs

1

A

2

A

3

A

2

B

5

B

1

C

3

C

4

C

5

C

1

D

2

D

3

D

4

D

Figure 5.3: Visualization of our user-based hybrid filtering algorithm for item recommen-
dation. In the user-based approach, the metadata assigned by a user to his items is con-
catenated to form a user profile. User similarities are then calculated by matching active
user profiles with the other training user profiles.

Chapter 5. Exploiting Metadata for Recommendation 93

Item-based hybrid filtering The second variant of hybrid filtering is item-based hybrid
filtering, which again consists of two steps: (1) calculating the most similar neighbors of the
active user’s items, and (2) using those neighboring items to predict which unseen items the
active user would. The second step is performed in the same manner as described earlier in
Subsection 4.3.1. For each item we generate item profile representations, and then retrieve
the most relevant item profiles for all of the active user’s items. The item representations
are constructed as follows. We create item profiles for each item by concatenating all of
the metadata assigned to that item by all the users who have the item in their profile. This
means that items are represented by their aggregated community metadata and not just
by a single user’s data. After constructing the item profiles, the item similarities are then
calculated as described in Subsection 5.2.3.

Figure 5.4 illustrates the first step in item-based hybrid filtering using the same toy data set
as before. In the first step, the item profiles are generated for all of the active user’s items.
For item 1 of user D, for instance, this means concatenating all the metadata assigned by
users A, C, and D to item 1. After constructing the item profiles, the item similarities are
then calculated as described in Subsection 5.2.3.

Training postsAc.ve user's posts

Item‐based hybrid filtering

similarity
matching

1 A C D

2 A B D

3 A C

5 B C

4 C

test pairstraining pairs

1

A

2

A

3

A

2

B

5

B

1

C

3

C

4

C

5

C

1

D

2

D

3

D

4

D

Figure 5.4: Visualization of our item-based hybrid filtering algorithm for item recommen-
dation. In the item-based approach we combined the item metadata to form item profiles.
The item similarities are then calculated by matching active item profiles with the other
training item profiles.

5.2.3 Similarity Matching

Both the content-based and hybrid filtering algorithms contain a similarity matching step
where user, item, or post representations are matched against each other on similarity in
the metadata assigned. There are many different methods of calculating the similarity be-
tween representations. These methods are typically based on techniques from IR, machine
learning, or both (see also Section 5.4). We chose to approach content-based and hybrid

Chapter 5. Exploiting Metadata for Recommendation 94

filtering from an IR perspective because of the rich textual nature of many of the metadata
fields.

To calculate the similarities between the different user, item, and post profiles, we used
the open-source retrieval toolkit Lemur3. The Lemur toolkit implements different retrieval
algorithms based on language modeling as well as probabilistic and Vector Space-based
retrieval algorithms. We used version 2.7 of this toolkit to perform our experiments. The
toolkit also offers support for options such as stemming and stop word filtering. We refer
the reader to Strohman et al. (2005) for more information about the Lemur toolkit.

In order to decide which retrieval algorithm to use for our similarity matching, we compared
four different algorithms (Strohman et al., 2005): (1) language modeling with Jelinek-
Mercer smoothing, (2) language modeling with Dirichlet smoothing, (3) the OKAPI model,
and (4) the Vector Space model with tf·idf term weighting. Preliminary experiments showed
that language modeling with Jelinek-Mercer smoothing was the best-performing retrieval
method. Jelinek-Mercer smoothing interpolates the language model of a user or item profile
with the language model of a background corpus—in our case the training collection of all
user or item profiles. In our experiments, the weighting parameter λ was set to 0.9. The
language models we used were maximum likelihood estimates of the unigram occurrence
probabilities. Our preliminary findings with regard to Jelinek-Mercer smoothing were in
line with the findings of Zhai and Lafferty (2004), who found it to work better for verbose
queries than other smoothing methods such as Dirichlet smoothing, and with our previous
work on news article recommendation in Bogers and Van den Bosch (2007). We also exam-
ined stemming and stop word filtering using the SMART stop word list in our preliminary
experiments. Based on the results we filtered stop words and did not perform stemming.

5.2.4 Selecting Metadata Fields for Recommendation Runs

In Section 5.1, we described the range of metadata fields we have available in our four
data sets, and how we divided these into intrinsic and extrinsic metadata fields. We wish
to address RQ 2a by examining which (combinations of) metadata fields provide the best
performance for the four algorithms we described in the previous section. Experimenting
with every single possible combination of metadata fields would lead to a combinatorial
explosion of possible sets of metadata fields. In this section we describe which sets of
metadata fields we decide to examine.

The item-intrinsic metadata fields relate directly to the content of the item being annotated.
We will therefore examine the contribution of all intrinsic metadata fields separately, as well
as running experiments using the set of all intrinsic metadata fields combined. In contrast,
the item-extrinsic fields can only play a supporting role in generating recommendations.
We will therefore only examine the extrinsic metadata fields in conjunction with all of the
intrinsic metadata fields combined.

This results in the following experiments. For the two bookmarks data sets, BibBoo and De-
licious, we have only four different intrinsic metadata fields and no extrinsic metadata. This

3Available at http://www.lemurproject.org

http://www.lemurproject.org

Chapter 5. Exploiting Metadata for Recommendation 95

results in five different runs for both data sets: one run for each of the intrinsic metadata
fields separately, and one run for all intrinsic metadata fields combined.

The data sets covering scientific articles, BibArt and CiteULike, contain more metadata
fields. The BibArt data set offers 11 item-intrinsic metadata fields and 16 item-extrinsic
metadata fields; CiteULike offers 9 item-intrinsic and 15 item-extrinsic metadata fields. This
results in 13 different experimental runs on the BibArt data set: 11 separate runs for each
of the intrinsic metadata fields, an additional run for all intrinsic metadata fields combined,
and final run with all intrinsic and extrinsic metadata fields combined. For the CiteULike we
have 11 experimental runs in total, because of two missing intrinsic metadata fields. This
results in a total number of 34 experimental runs for each of the four algorithms, allowing
us to determine what metadata works better for which algorithm.

5.3 Results

In this section we present the results of the four algorithms we described in Subsection 5.2.1
and 5.2.2 on the 34 experimental runs described in Subsection 5.2.4. For each algorithm
we use the same tabular form to present our results: in the top part of the table we list
the results of a particular algorithm using only the individual intrinsic metadata fields. The
bottom part shows the results for the two runs with the combined metadata fields. We
group together the results of the two content-based filtering algorithms in Subsection 5.3.1
and the two hybrid filtering algorithms in Subsection 5.3.2 for comparison purposes. In
Subsection 5.3.3 we compare the results of recommendation using metadata to the best
TBCF and GBCF algorithms from Chapter 4.

5.3.1 Content-based Filtering

Table 5.2 contains the results of the two content-based filtering approaches. When we com-
pare the two algorithms, we see that, overall, the best-performing approach is the profile-
centric approach where we match complete user profiles against complete item profiles. It
outperforms the post-centric approach on three of our four data sets; significantly so on the
CiteULike data set with an improvement of 117% (p < 10−6). Only on the Delicious data
set does post-centric matching perform significantly better (p < 0.05). If we look at all the
individual runs, we see that on 22 of 34 runs the profile-centric approach achieves the best
results. This advantage is even stronger on the article data sets, where 75% of the time the
profile-centric approach performs best.

Metadata Comparison How do the individual fields contribute towards performance of
the profile- and post-centric approaches? The best-performing single fields are AUTHOR,
DESCRIPTION, TAGS, and TITLE, which provide the best individual results on all four data
sets for both content-based filtering approaches. This is not surprising, as these fields are
the least sparse of all the intrinsic fields, and they are aimed directly at describing the con-
tent of the items, more so than the conference or journal titles or the editors. In ten out of
thirteen instances, these fields perform best in a profile-centric approach. On the CiteULike

Chapter 5. Exploiting Metadata for Recommendation 96

Table 5.2: Results of the profile-centric (top) and post-centric (bottom) content-based
filtering approaches. Reported are the MAP scores. The best-performing runs for each data
set and approach are printed in bold.

Profile-centric approach

Runs
bookmarks articles

BibSonomy Delicious BibSonomy CiteULike

ABSTRACT - - 0.0132 0.0497
AUTHOR - - 0.0625 0.0422
BOOKTITLE - - 0.0135 0.0182
DESCRIPTION 0.0084 0.0004 0.0977 -
EDITOR - - 0.0063 0.0000
JOURNAL - - 0.0095 0.0121
NOTE - - 0.0167 -
SERIES - - 0.0108 0.0005
TAGS 0.0350 0.0013 0.0980 0.0593
TITLE 0.0138 0.0014 0.0502 0.0660
URL 0.0119 0.0012 0.0059 0.0165
All intrinsic fields 0.0402 0.0011 0.1279 0.0978
All intrinsic + extrinsic fields - - 0.1188 0.0987

Post-centric approach

Runs
bookmarks articles

BibSonomy Delicious BibSonomy CiteULike

ABSTRACT - - 0.0176 0.0254
AUTHOR - - 0.0347 0.0191
BOOKTITLE - - 0.0124 0.0079
DESCRIPTION 0.0110 0.0003 0.0809 -
EDITOR - - 0.0128 0.0000
JOURNAL - - 0.0045 0.0063
NOTE - - 0.0140 -
SERIES - - 0.0142 0.0011
TAGS 0.0159 0.0036 0.0715 0.0377
TITLE 0.0107 0.0018 0.0215 0.0285
URL 0.0146 0.0013 0.0071 0.0048
All intrinsic fields 0.0259 0.0023 0.1190 0.0455
All intrinsic + extrinsic fields - - 0.1149 0.0441

data set, these differences are all significant. Interestingly, on Delicious the best run is the
post-centric run using only the TAGS field which performs better than all the other runs,
and significantly so on all runs except the post-centric run with all intrinsic fields combined.
Here, it appears that the extra information actually confuses the recommendation algorithm
compared to using the individual fields.

In general though, the runs with all intrinsic fields combined outperform the runs using
individual fields. On the article data sets, these differences are significant in the majority
of the cases; on the bookmark data sets the intrinsic combined runs were only significantly
better in a few cases. If we look at the runs where the two groups of fields are combined, we
see that using only the intrinsic results in slightly better results than using both the extrinsic
and the intrinsic metadata fields. In three out of four cases on the BibArt and CiteULike
data sets, the runs with intrinsic fields are slightly better than the runs with all fields, but
these differences are never significant. This suggests that adding the extrinsic fields that

Chapter 5. Exploiting Metadata for Recommendation 97

describe non-content-based aspects of the items might confuse the k-NN algorithm slightly
when making predictions.

5.3.2 Hybrid Filtering

Table 5.3 contains the results of the two hybrid filtering approaches: user-based and item-
based hybrid filtering.

Table 5.3: Results of the user-based (top) and item-based (bottom) hybrid filtering ap-
proaches. Reported are the MAP scores as well as the optimal number of neighbors N . The
best-performing runs for each data set and approach are printed in bold.

User-based approach

Runs
bookmarks articles

BibSonomy Delicious BibSonomy CiteULike
MAP N MAP N MAP N MAP N

ABSTRACT - - - - 0.0121 2 0.0494 2
AUTHOR - - - - 0.0360 2 0.0605 2
BOOKTITLE - - - - 0.0274 2 0.0434 3
DESCRIPTION 0.0099 2 0.0007 8 0.0128 2 - -
EDITOR - - - - 0.0066 2 0.0358 2
JOURNAL - - - - 0.0319 2 0.0409 2
NOTE - - - - 0.0203 2 - -
SERIES - - - - 0.0231 2 0.0079 2
TAGS 0.0168 2 0.0016 13 0.0158 2 0.0405 4
TITLE 0.0183 2 0.0020 8 0.0410 2 0.0608 2
URL 0.0218 2 0.0029 13 0.0073 2 0.0536 2
All intrinsic fields 0.0197 2 0.0039 13 0.0155 2 0.0536 2
All intrinsic + extrinsic fields - - - - 0.0105 2 0.0545 2

Item-based approach

Runs
bookmarks articles

BibSonomy Delicious BibSonomy CiteULike
MAP N MAP N MAP N MAP N

ABSTRACT - - - - 0.0179 17 0.0423 54
AUTHOR - - - - 0.0705 10 0.0325 9
BOOKTITLE - - - - 0.0104 5 0.0103 6
DESCRIPTION 0.0083 2 0.0003 8 0.0754 13 - -
EDITOR - - - - 0.0081 7 0.0000 8
JOURNAL - - - - 0.0165 6 0.0096 11
NOTE - - - - 0.0165 2 - -
SERIES - - - - 0.0094 7 0.0022 7
TAGS 0.0399 11 0.0014 4 0.0773 13 0.0746 21
TITLE 0.0059 8 0.0007 9 0.0300 23 0.0475 25
URL 0.0106 2 0.0006 3 0.0107 3 0.0078 3
All intrinsic fields 0.0267 14 0.0017 7 0.1510 21 0.0719 49
All intrinsic + extrinsic fields - - - - 0.1482 28 0.0716 49

We see that the best-performing runs for each data set are all from the item-based hybrid
filtering approach. On the BibArt and Delicious data sets these differences are statistically
significant and especially large at 268% (p < 0.05) and 112% respectively (p < 0.01). It is
interesting to note that on the majority of the 28 individual runs, the user-based approach

Chapter 5. Exploiting Metadata for Recommendation 98

performs best in 19 cases. However, most of these runs are using fields that were only
sparsely filled. It is to be expected then that user-based filtering, the method that aggregates
the most information, can best deal with these more sparsely populated fields.

Metadata Comparison How do the individual fields contribute towards performance of
the user- and item-based approaches? As with the content-based filtering approaches, the
best-performing single fields are AUTHOR, DESCRIPTION, TAGS, and TITLE, which provide the
best individual results on all four data sets in 75% of the cases. In addition, however, we
see that the URL, JOURNAL, and BOOKTITLE also tend to perform well, especially for the user-
based approach. On the bookmark data sets BibBoo and Delicious, the runs using only the
content of the URL actually perform best of all individual runs, which is surprising. Another
interesting observation is that the TITLE field serves as a better source of user and item
similarity on the article data sets than on the bookmark data sets. Apparently, the titles
assigned to bookmarks are not as descriptive as the titles assigned to scientific articles,
leading to this big performance gap.

If we look at the runs where the two different groups of fields are combined, we see again
that there are only small performance differences between these two runs. In three out of
four cases, the runs with intrinsic fields are slightly better, but these differences are never
significant. Finally, we see that in five out of eight cases, the runs where all intrinsic fields
are combined are actually outperformed by runs using only the metadata from a single field.
This suggests that for calculating user and item similarities combining all the intrinsic fields
often confuses the recommendation algorithms.

5.3.3 Comparison to Folksonomic Recommendation

In this subsection, we compare the best recommendation results obtained by using metadata
with the best results obtained in Chapter 4 where we only used the folksonomy to generate
recommendations. Table 5.4 shows the results of the best content-based and hybrid filtering
runs, as well as the best CF and TOBCF runs from Chapter 4. In addition, we compare it
to the tag-aware fusion approach of Tso-Sutter et al. (2008), the best-performing GBCF
algorithm.

We can see in Table 5.4 that on three out of four data sets our recommendation algo-
rithm that uses metadata is better than the best CF run. Only on the Delicious data set do
all metadata-based approaches perform significantly worse than the CF runs that use only
information from the folksonomy. The best-performing runs are all runs that use the com-
bination of intrinsic and/or extrinsic fields to calculate the similarities between users and
items. The best metadata-based approach is strongly dependent on the data set, but the
profile-centric approach performs best on two of our four data sets, BibBoo and CiteULike.
When we compare all metadata-based approaches with each other, we see that most differ-
ences are not statistically significant. On the BibArt data set, the item-based hybrid filtering
approach is significantly better than the user-based approach (p < 0.05). On the CiteULike
data set, the profile-centric approach also significantly outperforms the post-centric and
user-based approaches.

Chapter 5. Exploiting Metadata for Recommendation 99

Table 5.4: Results comparison of the metadata-based runs with our best folksonomic rec-
ommendation runs. Reported are the MAP scores as well as the optimal number of neigh-
bors N . The best-performing metadata-based runs are printed in bold. In addition, we
compare our best runs so far from both chapters with the tag-aware fusion algorithm we
examined in Subsection 4.6.1. The percentage difference between our best CF approaches
and between the tag-aware fusion method are listed in the appropriate rows.

Runs
bookmarks articles

BibSonomy Delicious BibSonomy CiteULike
MAP N MAP N MAP N MAP N

Best CF run
0.0370È 3 0.0101È 23 0.1100È 7 0.0887È 30
(IT-JACCARD-SIM) (IT-BIN-SIM) (IT-TFIDF-SIM) (I-BIN-IDF-SIM)

Profile-centric filtering
0.0402È - 0.0014È - 0.1279È - 0.0987È -

(all intrinsic) (TITLE) (all intrinsic) (all extrinsic)

Post-centric filtering
0.0259È - 0.0036Ï - 0.1190È - 0.0455È -

(all intrinsic) (TAGS) (all intrinsic) (all extrinsic)

User-based hybrid filtering
0.0218È 2 0.0039Ï 13 0.0410È 2 0.0608È 2

(URL) (all intrinsic) (TITLE) (TITLE)

Item-based hybrid filtering
0.0399È 11 0.0017È 8 0.1510È 21 0.0746È 21

(TAGS) (all intrinsic) (all intrinsic) (TAGS)
% Change over best CF run +8.6% -61.4% +37.3% +11.3%

Tag-aware fusion 0.0474È - 0.0166È - 0.1297È - 0.1268È -
% Change over tag-aware fusion run -15.1% -50.0% +16.4% -22.2%

If we compare the metadata-based runs to the tag-aware fusion algorithm, we find that tag-
aware fusion is the strongest recommendation algorithm for social bookmarking we have
seen so far. Compared to the metadata runs, only the item-based hybrid filtering approach
on the BibArt data set outperforms the tag-aware fusion approach by 16% and this is not
statistically significant. On the other three data sets, tag-aware fusion is the best approach.
On the two largest data set Delicious and CiteULike these differences are even statistically
significant (p < 0.05).

5.4 Related Work

We start in Subsection 5.4.1 by discussing the related work on content-based filtering. In
Subsection 5.4.2 we then discuss the related work on hybrid filtering approaches in recom-
mendation.

5.4.1 Content-based Filtering

While a significant amount of research has focused on CF for recommending interesting
items, there has also been considerable work on content-based filtering, which can be seen
as an extension of the work done on information filtering (Belkin and Croft, 1992). Typi-
cally, content-based filtering approaches focus on building some kind of representation of
the content in a system and then learning a profile of the user’s interests. The content
representations are then matched against the user’s profile to find the items that are most
relevant to that user. The type of representations that are constructed depend on the learn-
ing methods employed, which typically include techniques from IR, machine learning, or

Chapter 5. Exploiting Metadata for Recommendation 100

both. Content-based filtering has been applied to many different domains. We discuss ap-
proaches that cover six of these domains: news, movies, books, music, cultural heritage,
and personal agents.

News Early work on content-based filtering in the news domain included the NewsWeeder
system by Lang (1995), which used the words contained in newsgroup messages as its fea-
tures and found that a probabilistic approach based on the Minimum Description Length
principle outperformed tf·idf weighting. In their approach to personalization of an online
newspaper, Maidel et al. (2008) used an ontology of news concepts to recommend inter-
esting news articles to users, because the dynamic nature of news precludes the use of CF.
Articles were rank-ordered based on the distance between ontological concepts covered by
the user and item profiles. Their experiments showed that using a hierarchical ontology
produces better recommendations compared to a flat ontology.

Movies Alspector et al. (1997) compared a CF approach to movie recommendation with
content-based filtering. For their content-based component they built metadata representa-
tions of all movies using fields such as directory, genre, and awards, and used linear regres-
sion and classification and regression trees to learn user profiles and rank-order the items
for those users. They found that CF performed significantly better than the content-based
methods, but noted that this was likely due to the poor feature set they used.

Books Mooney and Roy (2000) describe LIBRA, a content-based book recommender sys-
tem. In their approach, they crawled the book metadata from the Amazon website and
represented each book as a bag-of-words vector. They then used a Naive Bayes classifier to
learn user profiles and to rank-order unseen books for the user, with good results.

Music Music retrieval and recommendation is a fourth domain that content-based filtering
has been applied to. It is one of the typical fields where content analysis of the audio signal
is often difficult and costly, so metadata and tags are often used for content-based music
retrieval instead. Whitman and Lawrence (2002), for instance, crawled textual descriptions
of artists on web pages, online groups, and discussion forums to do content-based music
recommendation. They then used this data to calculate artist similarity and recommend
related artists. They calculated tf·idf-based similarity based on extracted noun phrases and
adjectives, and attained good results compared to human-edited lists.

Cultural heritage De Gemmis et al. (2008) tackled the problem of cultural heritage per-
sonalization using content-based recommendation. They represented user profiles as fea-
ture vectors containing both the metadata and the tags assigned to a user’s selected content,
and used the Naive Bayes algorithm to learn user profiles and predict what unseen items
might be of interest to the users. On their small data set, they found that using metadata
and tags together results in the best performance.

Personal agents A sixth domain in which content-based filtering techniques are often
used is that of personal agents, the so-called Information Management Assistants (IMAs),
that locate and recommend relevant information for the user by inferring a model of the
user’s interests. We already discussed IMAs extensively earlier on in Subsection 2.1.4. We

Chapter 5. Exploiting Metadata for Recommendation 101

noted that the majority of these IMAs approach content-based filtering from an IR perspec-
tive. Typically, they condense the Web pages or documents that a user has shown an implicit
or explicit interest in, into a set of keywords that then sent off to various search engines.
The results are subsequently ranked and presented to the users. The keywords are also
commonly used to build up a representation of the user to further personalize the recom-
mendations. This type of approach to content-based filtering inspired our own approaches,
with the difference that we do not condense our item representations into queries, but in-
stead let the retrieval engine take care of this.

5.4.2 Hybrid Filtering

We are not the first to propose a union of CF and content-based filtering. The advantages of
both approaches are largely complementary. CF is the more mature of the two approaches
and works best in a situation with a stable set of items and a dense user base that is divided
into different neighborhoods. In such situations, they are good at exploring new topics and
taking quality into account in the form of ratings. However, CF algorithms are known to
have problems with users with unique tastes and so-called ‘gray sheep’ users with unre-
markable tastes that are hard to categorize (Claypool et al., 1999). Content-based filtering
methods are better at dealing with sparse, dynamic domains such as news filtering, and are
better at recommending for users that are hard to peg. They are also known to produce
focused, high precision recommendations, and to suffer less from the cold-start problem.

Several hybrid methods that try to combine the best of both worlds have been proposed
over the years. We briefly describe five of them. Basu et al. (1998) were among the first to
propose a hybrid recommender system that used both collaborative and content features to
represent the users and items. The collaborative features captured what movies a user likes
and the content features include metadata fields such as actors, directors, genre, titles, and
tag lines. They used Ripper, a rule-based machine learning algorithm to learn user profiles
and predict which items are interesting. They found that the combination of collabora-
tive and content-based features did indeed produce the best results. Claypool et al. (1999)
present a weighted hybrid recommender system that calculates a weighted average of the
output of two separate CF and content-based filtering components. The CF component re-
ceives a stronger weight as the data sets grows denser, gradually phasing out the influence
of the content-based component. They did not find any significant differences between the
performance of the separate components or the combined version. A third hybrid filtering
method is that by Baudisch (1999), who proposed an innovative approach to incorporating
metadata into CF algorithms by joining the metadata descriptions to the user-item matrix
as additional users. This is similar to the approach taken by Tso-Sutter et al. (2008), who
added tags as extra users and items in their approach. The fifth hybrid filtering approach
is that of Basilico and Hofmann (2004). They performed movie recommendation and com-
bined usage information with metadata collected from IMDB. Their hybrid approach used
Joint Perceptron Ranking with different kernels representing the user correlations and meta-
data features to predict movie ratings. Basilico and Hofmann found that using metadata
performed significantly worse than using usage information, but reported that this was due
to the relatively low quality of the metadata collected.

Chapter 5. Exploiting Metadata for Recommendation 102

There are at least three approaches that come closer to our own hybrid in the sense that they
calculate user or item similarities based on extra information and plug those into traditional
CF algorithms. First, Burke (2002) designed a hybrid restaurant recommender system that
combines CF with a knowledge-based recommender system. They took the semantic ratings
assigned to restaurants (e.g. ‘expensive’, ‘lively’, ‘haute cuisine’) and used those to calculate
a semantic similarity between users. These user similarities were then plugged into a CF
algorithm to generate recommendations. Second, Paulson and Tzanavari (2003) also come
close to our own approach. They used the distance-based similarities between concepts in a
domain ontology to determine the similarity between users, and plugged those similarities
into a CF algorithm. Third, Ziegler et al. (2004) take a similar approach using a book
taxonomy to extend the similarity calculation between users. All three of these approaches
report significant improvements over traditional CF similarity metrics.

We present two findings with regard to the review of related work on hybrid filtering. First,
while some researchers report significant improvements of their hybrid approaches over the
separate algorithms, other researchers do not find any improvement at all. This makes it
difficult to draw any definite conclusions as to the performance benefits of hybrid recom-
mender systems. This inconclusiveness is caused partly by the second prevalent finding in
the literature: the performance of content-based filtering depends strongly on (1) the qual-
ity of the metadata used and (2) the constructed features based on this metadata. Poor
performance is most often attributed to low quality metadata.

5.5 Discussion

In this section, we step back and take stock of our findings with regard to exploiting meta-
data for social bookmarking recommendation. We start by discussing our findings with
regard to our content-based filtering and hybrid filtering methods. We then describe the
influence the different (combinations of) metadata fields have on recommendation perfor-
mance. We end this section by discussing the results of our comparison with algorithms
from the related work.

Content-based Filtering We first compared the two content-based filtering algorithms,
profile-centric matching and post-centric matching. We found that a profile-centric ap-
proach, where we match the aggregated metadata of a user directly against the aggregated
metadata of items, outperforms a similar approach at the post level. A likely explanation
for the latter finding is that posts, as a lower level of information objects, carry much less
metadata. Indeed, Table 5.1 shows that metadata coverage goes up as we proceed from the
post level to the item and user levels of granularity. Metadata sparseness can be a problem
for the post-centric approach: when most of the metadata fields are not filled for each post
this means that some posts simply cannot be matched to other posts because there is not
enough data. At the profile level, posts that lack certain metadata are combined with other
posts that do have this metadata, ensuring more richly filled user and item representations,
and subsequently better matching between profiles.

Chapter 5. Exploiting Metadata for Recommendation 103

On the Delicious data set the post-centric approach performed better than the profile-centric
approach. A possible reason for this is that the user profiles on Delicious show the greatest
topical variety. Aggregating all posts into a single profile here might result in too broad a
user representation, where there is always a part of the representation that matches some
item. A more fine-grained approach might be able to overcome this. However, we do not
see as strong an effect on BibBoo and do not have a clear explanation for this.

Hybrid Filtering When comparing our two hybrid filtering algorithms, user-based and
item-based hybrid filtering, we found that item-based hybrid filtering performed best. How-
ever, it should be noted that user-based filtering was better in many of the individual field
runs. We could expect the same explanation for the difference between profile-centric and
post-centric to hold here: aggregation at a higher level suffers less from metadata sparse-
ness. However, item profiles are a higher-level aggregation than posts, and coverage is
indeed a bit higher for item representations. The DESCRIPTION fields in the BibBoo and
BibArt data sets, for instance, have their coverage nearly doubled when aggregating post
metadata into item representations.

Most importantly, we believe the algorithmic difference between user-based and item-based
CF comes into play here. For user-based matching we calculate the user similarities based
on content, but this content plays only a small role in generating the final recommendations.
For the sake of argument, let us say that we only use the nearest neighbor for predictions
(i.e., N = 1). We can expect certain items of the neighbor to be better recommendations
than others, and indeed those items are what the active user and the neighbor user matched
on so strongly. However, in selecting the items to be recommended no attention is paid to
the actual topical overlap between the active user’s items and the neighbor’s items. Instead,
each of the items of the active user’s nearest neighbor is promoted equally, scored with the
similarity between the users. In the item-based approach, there is a direct focus on the items
of the active users and what other items in the data set they best match up with. If we hold
N at 1 again, then new items are promoted directly according to their topical similarity with
the active user’s items. If the item similarity calculation is not hampered by sparsity as it was
in usage-based CF, then we may expect this approach to generate better recommendations
than the user-based approach. This argument also holds for larger neighborhood sizes.

Metadata Fields We observed that certain metadata fields provide better recommenda-
tions than other fields. The TITLE field, for instance, was found to perform worse on book-
mark data sets than on article data sets. A likely explanation for this is that article titles are
picked by the authors and are fixed to the articles. Aggregating the TITLE field into item
profiles, for instance, will usually amount to mere duplications of the title. Users posting
bookmarks, however, are free to change the title of the bookmark and are more likely to do
so. These personalized versions of titles are less likely to match the right related items.

An interesting question is how much of an influence the sparseness of a metadata field
has on performance. If we look at the correlation between coverage at the different levels
of granularity and MAP, we find only weak correlations at the user level. Most metadata
fields have high coverage at the user level, so it is mainly the quality of the field that has the
biggest influence on the recommendation. At the item and user levels however, we find weak
to moderate positive correlations ranging from 0.34 to 0.50. The latter finding suggests that

Chapter 5. Exploiting Metadata for Recommendation 104

performance tends to go up as the coverage increases. Upon closer examination, we see that
the fields with high sparsity always correspond to low performance. The fields with high
coverage do not automatically achieve high MAP scores, suggesting that the usefulness for
recommending related items and the quality of the metadata field play a larger role here,
confirming the findings in the related work.

The influence of metadata quality on recommendation is also evident from the fact that
in some cases the runs based on individual fields outperformed runs that combined all
metadata fields. This shows that combining highly predictive fields with lower-quality fields
can hurt performance and introduce too many false positives in the list of recommendations.
We believe that feature selection techniques could be used here to determine the optimal set
of metadata fields (Jain and Zongker, 1997). We found no significant differences between
the runs with all intrinsic fields versus the runs with both intrinsic and extrinsic fields. This
absence of significant differences implies that these supporting fields do not add anything
to the recommendation process.

We cannot declare one of our four metadata-based algorithm as the best one. The optimal
metadata-based algorithm depends on the data set and the metadata fields used. Based on
our experimental results, however, we may conclude (1) that profile-centric matching and
item-based hybrid filtering are most consistently among the best-performing algorithms,
and (2) that using (at least) all of the intrinsic metadata fields combined typically yields the
best performance.

Comparison to Folksonomic Recommendation In Section 5.4 we discussed a substantial
body of related work for both our content-based and hybrid filtering approaches. We ex-
plained that our choice for an IR approach was inspired by the work on IMAs in the 1990s.
A main difference is that, where they condensed item representations into the most salient
keywords, we use the entire representation in the matching process. It is complicated, how-
ever, to compare findings from the early work on IMAs to those from our own work, because
of the different conceptual designs and usage scenarios, and the temporal difference.

When comparing our metadata-based algorithms to the CF and TOBCF algorithms from
Chapter 4, we found that our best metadata-based runs outperformed the best CF and TO-
BCF runs. Metadata-based runs performed best on three of our four data sets: BibBoo,
BibArt, and CiteULike. We believe this is because using metadata results in richer repre-
sentations for matching users and items. All of our best metadata runs use the combined
metadata fields. On their own, each field can be seen as imperfect representations of the
items and users, but combined they alleviate each others weak points and better represent
the content than they do separately. This is in accordance with, for instance, the principle
of polyrepresentation of Ingwersen (1994). However, we do not have an explanation as to
why the CF runs performed better on the Delicious data set.

In addition, we compared the best GBCF algorithm from Section 4.6—the tag-aware fusion
method of Tso-Sutter et al. (2008)—to our metadata-based algorithms in Subsection 5.3.3.
The tag-aware fusion method outperforms our best meta-data algorithms on three of our
data sets. Tag-aware fusion combines different representations—transaction patterns and
tagging patterns—with different algorithms by fusing user-based and item-based filtering

Chapter 5. Exploiting Metadata for Recommendation 105

predictions. In contrast, our metadata-based algorithms only combine different representa-
tions.

Because of the clear benefit of fusing different recommendation algorithms and different
representation, we expect that combining different algorithms that use different parts of
the data set to generate recommendations will lead to improvements over the component
algorithms. In this light it would be interesting to combine the best CF runs with the best
metadata-based runs. We will examine this and compare different combination methods in
the next chapter.

An interesting question to ask is why one should consider other recommendation approaches,
given that tag-aware fusion outperforms most of the other algorithms proposed so far. We
can think of two reasons. The first reason is implementation effort. The metadata-based
approaches are based on textual similarity matching as is commonly performed by search
engines. The existing search infrastructure of a social bookmarking website could there-
fore be leveraged to implement metadata-based recommendation. However, the tag-aware
fusion algorithm would have to be implemented from scratch. As the best metadata-based
approaches are quite competitive compared to tag-aware fusion, we conjecture that it might
be more efficient to implement metadata-based recommendation when mature search in-
frastructure is available. A second reason to choose another algorithm over tag-aware fusion
could be running time of the algorithm. The similarity calculation phase in CF algorithms
takes up the majority of the computational resources. As tag-aware fusion extends the nor-
mal ratings matrix R with two extra matrices UT and ITT , similarity computation also takes
up more time because of the larger size of the combined matrices. This could be another
reason to prefer one of the TOBCF algorithms, where the user and item similarities are
calculated on only one of the matrices.

5.6 Chapter Conclusions and Answer to RQ 2

The metadata that users assign to their items is a rich source of information that could
potentially improve recommendation performance. In this chapter we answered our second
research question and its two subquestions.

RQ 2 How can we use the item metadata available in social bookmarking
systems to provide accurate recommendations to users?

RQ 2a What type of metadata works best for item recommendation?

RQ 2b How does content-based filtering using metadata compare with folk-
sonomic recommendations?

To address RQ 2, we proposed two types of recommendation methods that employ meta-
data: content-based filtering and hybrid filtering. Inspired by the work on IMAs, we took
an IR approach to content-based filtering. We constructed textual representations of the

Chapter 5. Exploiting Metadata for Recommendation 106

metadata assigned by users, assigned to items, and assigned to separate posts. We proposed
two variants of content-based filtering, profile-centric matching and post-centric matching.
The difference between the two variants is the level of granularity at which metadata repre-
sentations are matched. We found that a profile-centric approach, where all of the metadata
assigned by a user is matched against metadata representations of the items worked better
than a post-centric approach that matched representations at a finer level of granularity. We
believe this is due to sparseness issues of the fine-grained post-centric approach.

Our hybrid filtering method combined a standard nearest-neighbor CF algorithm with content-
based filtering. Analogous to the standard CF algorithm we defined two variants: user-based
hybrid filtering and item-based hybrid filtering. For both algorithms we use the metadata
representations to calculate the user and item similarities respectively. These similarities
are then used to locate the nearest neighbors to generate the recommendations according
to the standard user-based and item-based CF algorithm. Of these two algorithms we found
that item-based filtering with the metadata-derived similarities works best, as it did with
tag overlap similarities.

When comparing all four metadata-based algorithms, we cannot single out a single-best
combination of algorithm and metadata fields. Based on our experimental results, however,
we may conclude (1) that profile-centric matching and item-based hybrid filtering are most
consistently among the best-performing algorithms, and (2) that using (at least) all of the
intrinsic metadata fields combined typically yields the best performance.

In answer to RQ 2a, we divided our 27 different metadata fields that occurred in our four
data sets into two broad categories. The first category was item-intrinsic metadata, which
relate directly to the content of the item being annotated. The second category was item-
extrinsic metadata, which cover the administrative information that could never serve as a
stand-alone source for recommendations. To determine the influence of the different types
of metadata, we experimented with using different (combinations of) metadata fields. For
each algorithm, we ran between 5 and 13 different experiments with different metadata
fields, depending on the data set. We found that while sparsity of an individual metadata
field does have an influence on recommendation performance, the quality of the informa-
tion contained in the field is just as important. Based on our experimental results, we may
conclude that combining all intrinsic metadata fields together tends to give the best perfor-
mance, whereas extrinsic information, i.e., information not directly related to the content,
does not.

Finally, to answer RQ 2b we compared our metadata-based approaches to the folksonomic
recommendation algorithms proposed in Chapter 4. We found that recommending using
metadata works better on three of our four data sets, making it a viable choice for recom-
mendation despite being underrepresented in the related work so far.

C
H

A
P

T
E

R 6
COMBINING RECOMMENDATIONS

In Chapters 4 and 5 we learned that combinations of different algorithms and representa-
tions tend to outperform individual approaches. Guided by our third research question, we
examine this phenomenon in more detail in this chapter.

RQ 3 Can we improve performance by combining the recommendations gen-
erated by different algorithms?

The problem of effective item recommendation is too complex for any individual solution to
capture in its entirety, and we expect that by combining different aspects of this problem we
can produce better recommendations. Earlier, we saw evidence for the potential success of
combination in the approach by Tso-Sutter et al. (2008) who successfully fused together the
predictions of different algorithms using different representations of the data. We already
proposed two combination approaches ourselves in the previous two chapters: our similarity
fusion algorithm in Subsection 4.4.3 and our hybrid filtering algorithm in Subsection 5.2.2.
On some data sets these produced superior recommendations, but the results were not
conclusive. This naturally leads us to the following subquestion.

RQ 3a What is the best recipe for combining the different recommendation
algorithms?

In this chapter we will examine the possibilities of data fusion1 in more detail. Instead of
augmenting or combining features for recommendation, we will examine the effectiveness
of combining the output of different recommendation runs (RQ 3), and compare the results
against the other fusion variants we have proposed so far (RQ 3a).

Chapter 6 is organized as follows. We start in Section 6.1 by discussing related work on data
fusion in the fields of recommender systems, IR and machine learning, and highlight some

1The term ‘data fusion’ can be ambiguous to a certain extent. In this chapter, we take it to mean output
fusion, i.e., fusing the recommendation lists from different runs, analogous to the use of the term in the field of
IR.

107

Chapter 6. Combining Recommendations 108

of the reasons why fusion is often successful. Then, in Sections 6.2 and 6.3, we describe our
approach to fusing recommendations and which individual runs we select for this. Section
6.4 then describes our results, addressing RQ 3 and RQ 3a. In addition, we compare them to
the similarity fusion and hybrid filtering techniques proposed in the previous two chapters
(RQ 3a). We end with a discussion of the results in Section 6.5.

6.1 Related Work

We start in Subsection 6.1.1 by discussing related work on fusing different recommendation
algorithms to improve upon the performance of the individual algorithms. Then, in Sub-
section 6.1.2, we discuss successful approaches to data fusion in two other fields: machine
learning and IR. We conclude in Subsection 6.1.3 by looking at the underlying explanations
for the success of data fusion to aid in the analysis of our own experiments with combining
recommendations.

6.1.1 Fusing Recommendations

In the past decade, the field of recommender systems has already seen several different
approaches to combining different recommendation algorithms. Burke (2002) presented
a taxonomy of seven different methods for creating hybrid recommendation algorithms,
which we reproduce here in Table 6.1. We briefly describe them below.

Table 6.1: A taxonomy of recommender system combination methods, as given by Burke
(2002).

Hybridization method Description

Mixed Recommendations from several different recommenders are
presented at the same time.

Switching The system switches between recommendation techniques de-
pending on the current situation.

Feature combination Features from different recommendation data sources are
thrown together into a single recommendation algorithm.

Cascade One recommender refines the recommendations given by an-
other.

Feature augmentation The output from one technique is used as an input feature to
another technique.

Meta-level The model learned by one recommender is used as input to
another.

Weighted The scores of several recommendation techniques are combined
together to produce a single recommendation.

The mixed hybridization method, arguably one of the most straightforward methods, presents
all outputs of the different individual algorithms at the same time. The practical applicability
of this technique is dependent on the scenario in which recommendations have to be pro-
duced; if a single results list is called for, then the recommendations will have to be merged.
A switching hybrid algorithm switches between the different component algorithms based
on certain criteria. For instance, the cold-start problem we mentioned in Subsection 2.1.1

Chapter 6. Combining Recommendations 109

could be a reason to base initial recommendations on the output of a content-based filter-
ing algorithm. As soon as sufficient ratings are collected from the users, the system could
then switch to a CF algorithm. In a feature combination approach, features from different
types of algorithms (i.e., collaborative information, content-based, or knowledge-based)
are combined and used as the input feature set for a single recommendation algorithm. Our
similarity fusion approach from Subsection 4.4.3 is an example of a feature combination ap-
proach, as it uses both collaborative and topic-based information in the form of tags. Burke
also describes two hybridization approaches that sequence two different recommendation
algorithms. In the cascaded hybrid approach, one recommendation algorithm is first used to
produce a coarse ranking of the candidate items, and the second algorithm then refines or
re-ranks this candidate set into the final list of recommendations. In contrast, in a feature
augmented hybrid algorithm one technique is employed to produce a rating of an item, after
which that rating is used as an input feature for the next recommendation technique. As
mentioned before, we view our hybrid filtering approach from Subsection 5.2.2 as a feature
augmentation approach. The meta-level hybrid approach takes this a step further by using
the entire model generated by the first algorithm as input for the second algorithm. Finally,
a popular and straightforward way of combining algorithms is by producing a weighted com-
bination of the output lists of the individual algorithms, where the different algorithms are
all assigned separate weights.

While each of these seven combination methods has its merits and drawbacks, there has not
been a systematic comparison of them on the same data sets using the same experimental
setup. The lack of such a comparison makes it difficult to draw conclusions about which
method is most effective in which situation. Most of the related work on recommender sys-
tems fusion has focused on combining content-based filtering with collaborative filtering.
We discussed the most important of these approaches in Section 5.4, and these range from
feature combination (Basu et al., 1998) and feature augmentation approaches (Mooney and
Roy, 2000) to weighted combination algorithms. The latter combination method is one we
will examine in more detail in this chapter, and the focus of the remainder of this related
work subsection. For instance, Claypool et al. (1999) presented a weighted hybrid recom-
mender system that calculated a weighted average of the output of two separate CF and
content-based filtering components. The CF component receives a stronger weight as the
data sets grows denser, gradually phasing out the influence of the content-based compo-
nent. They did not find any significant differences between the performance of the separate
components or the combined version. Pazzani (1999) combined three different recommen-
dation algorithms: a CF algorithm, content-based filtering, and recommendation based on
demographic information. They then used a majority-voting scheme to generate the final
recommendations which increases precision over the individual approaches. Finally, the
tag-aware fusion approach by Tso-Sutter et al. (2008) that we examined earlier, is also an
example of a weighted hybrid recommender system, as it calculates a linearly weighted com-
bination of separate user-based and item-based filtering predictions. This fusion approach
was originally inspired by the work of Wang et al. (2006a), who formulated a generative
probabilistic framework for the memory-based CF approach. Wang et al. generated the final
ratings by not only fusing predictions based on three sources: (1) ratings of the same item
by other users (i.e., user-based filtering); (2) different item ratings made by the same user
(i.e., item-based filtering); and (3) data from other but similar users that rated other but

Chapter 6. Combining Recommendations 110

similar items. Their original model showed a significant performance increase compared to
standard user-based and item-based filtering, and an improved resistance to ratings sparse-
ness.

6.1.2 Data Fusion in Machine Learning and IR

Data fusion has been shown to improve performance not only in the field of recommender
systems, but also in related fields. We discuss related work in two such fields: machine
learning and IR.

Machine Learning In machine learning we see similar methods for combination and hy-
bridization as those discussed by Burke (2002), but under different names. We discuss three
of the most popular combination methods in machine learning. The first is stacking, where
the output of one classifier serves as input feature for the next classifier (Wolpert, 1992).
This method is known to be capable of recognizing and correcting recurring errors of the
first-stage classifier, and corresponds to Burke’s feature augmentation method. A second
combination method is bagging, which generates multiple versions of a predictor by making
bootstrap replicates of the original data sets (Breiman, 1996). The set of predictors are then
used to obtain an aggregated predictor by doing majority voting when predicting an output
class. Bagging is similar to Burke’s weighted combination method. Third, boosting involves
learning an optimally weighted combination of a set of weak classifiers to produce a strong
classifier (Freund and Schapire, 1996). The process is iterative, as repeatedly misclassified
instances receive a higher weight in the next round of learning the weak classifier. This way
the entire data set can be covered correctly by the resulting strong classifier.

Information Retrieval Throughout this thesis we have taken an IR perspective on rec-
ommendation in our evaluation and algorithm design. We turn our attention to discussing
related work on data fusion in IR in this section. An important distinction to make here
is the one between results fusion, where the results of different retrieval algorithms on the
same collection are combined, and collection fusion, where the results of one or more algo-
rithms on different document collections are integrated into a single results list. We are not
interested in the latter approach, and refer the interested reader to, for instance, Voorhees
et al. (1995) for more information.

In IR, there are two prevalent approaches to results fusion: (1) combining retrieval runs
that were generated using different query representations but with the same algorithm, or
(2) combining retrieval runs that were generated using the same query, but with different
algorithms. In our social bookmarking scenario, the first type of data fusion corresponds to
using different representations of the user profile for recommendations—such as transac-
tion patterns, tagging behavior, or assigned metadata—and then combining those different
recommendation runs. The second approach corresponds to combining different recom-
mendation algorithms—such as CF and content-based filtering—and fusing those predicted
items into a single list of recommended items. Most approaches in IR also fall in one of
these two categories, with some approaches spanning both. Our contribution in this chap-
ter is that we will investigate the usefulness of both approaches for social bookmarking
recommendation in answering RQ 3 and RQ 3a.

Chapter 6. Combining Recommendations 111

The earliest approaches to data fusion in IR stem from the 1990s when Belkin et al. (1993)
investigated the effect of combining the result lists retrieved using different query represen-
tations of the same information need. They showed that progressive combination of query
formulations leads to progressively improving retrieval performance, and extended their
own work in Belkin et al. (1995) with an additional set of experiments confirming their
earlier findings. Later work on combining different query and document representations
includes the work by Ingwersen and Järvelin (2005), who view the fusion problem from a
cognitive IR perspective. They formulated the principle of polyrepresentation in which each
query or document representation, searcher, and retrieval model can be seen as a different
representation of the same retrieval process (Ingwersen, 1994, 1996). The validity of this
principle has been confirmed for queries, documents, searchers, and retrieval algorithms in
Skov et al. (2008) and Larsen et al. (2009).

Some of the earliest work on fusing the results of different retrieval algorithms includes
Croft and Thompson (1987), who fused a probabilistic retrieval model with a vector space
model. Bartell et al. (1994) also examined results fusion using different retrieval algo-
rithms. They proposed a linear combination of retrieval runs using different variants of the
same IR algorithm, and showed significant improvements over the individual runs. Vogt
and Cottrell (1998) later revisited this work and used linear regression to determine the
optimal combination of run weights. Fox and Shaw (1994) investigated a set of unweighted
combination methods that have become standard methods for data fusion in IR. They tested
three basic combination methods CombMAX, CombMIN, and CombMED that respectively
take the maximum, minimum, and median similarity values of a document from among the
different runs. In addition, they also proposed three methods CombSUM, CombMNZ, and
CombANZ that have consistently shown to provide good data fusion results. The Comb-
SUM method fuses runs by taking the sum of similarity values for each document sep-
arately; the CombMNZ and CombANZ methods do the same but respectively boost and
discount this sum by the number of runs that actually retrieved the document. Fox and
Shaw (1994) showed that the latter three methods were among the best performing fu-
sion methods. This work was later extended by Lee (1997) with a more thorough analysis,
and they found that CombSUM and CombMNZ were again the best-performing methods.
Periodically, these combination methods have been re-examined in different settings, such
as monolingual retrieval (Kamps and De Rijke, 2004), or against different probabilistic fu-
sion methods (Croft, 2000; Aslam and Montague, 2001; Renda and Straccia, 2003). The
CombSUM and CombMNZ methods have been shown to consistently improve upon the
performance of the individual retrieval runs.

6.1.3 Why Does Fusion Work?

In this section, we introduce various reasons that have been proposed in the related work
to explain the success of data fusion. Because of our IR perspective on recommendation,
we focus exclusively on explanations from this field. We will use these explanations later on
in the analysis of our experiments to explain what is happening in recommender systems
fusion.

Chapter 6. Combining Recommendations 112

Belkin et al. (1993) argue that the success of query result fusion is due to the fact that the
problem of effective representation and retrieval is so complex that individual solutions can
never capture its complexity entirely. By combining different representations and retrieval
models, more aspects of this complex situation are addressed and thus more relevant doc-
uments will be retrieved. This is similar to the explanation from the polyrepresentation
point of view (Ingwersen and Järvelin, 2005), which states that using different representa-
tions and retrieval models will retrieve different sets of information objects from the same
collection of objects with a certain amount of overlap. Merging cognitively different rep-
resentations and retrieval models corresponds to modeling different aspects of the task as
suggested by Belkin et al. (1993), and the overlapping documents are therefore seen as
more likely to be relevant.

The latter effect of overlapping documents having a higher likelihood of being relevant was
dubbed the Chorus effect by Vogt and Cottrell (1998). The Chorus effect is also related to
what Vogt and Cottrell define as the Skimming effect:

“ The Skimming Effect happens when retrieval approaches that represent their
collection items differently may retrieve different relevant items, so that a
combination method that takes the top-ranked items from each of the re-
trieval approaches will push non-relevant items down in the ranking. ”

A third, contradictory explanation by Vogt and Cottrell for the success of fusion is the Dark
Horse effect, which states that certain retrieval models might be especially suited to retriev-
ing specific types of relevant items compared to other approaches.

Spoerri (2007) describes the two of these effects, the Chorus and Skimming effects, under
different names: the Authority effect and the Ranking effect. The Authority effect describes
the phenomenon that the potential relevance of a document increases as the number of
systems retrieving it increases, while the Ranking effect describes the observation that doc-
uments higher up in ranked lists and found by more systems are more likely to be relevant.
They provide empirical evidence for these effects as the cause for the success of fusion. In
addition, they show that the two effects can be observed regardless of the type of query
representation.

It is clear from all of the above definitions that it is possible for one effect to conflict with
another. For instance, although one algorithm might be particularly well-suited for retriev-
ing specific types of relevant items (i.e., the Dark Horse effect), they might be pushed down
too far in the ranking by other items, relevant or not, that occur in multiple retrieval runs
(i.e., the Chorus effect).

6.2 Fusing Recommendations

When combining the output of different recommendation algorithms, a decision needs to
be made about what to combine: the scores or ratings assigned to the recommended items,
or the ranks of the items in the list of recommendations. These two options are commonly

Chapter 6. Combining Recommendations 113

referred to as score-based fusion and rank-based fusion in the related work. Earlier studies
reported on the superiority of using retrieval scores over document ranks for data fusion
(Lee, 1997), but later studies have re-examined this and found few significant differences
between the two (Renda and Straccia, 2003). We opt for using score-based fusion in our
experiments, since we could find no conclusive evidence to suggest that rank-based fusion
is better. The decision between score-based and rank-based fusion can also be seen as a
decision of what should be normalized: the item ranks or the item scores. In the field of
IR, different retrieval runs can generate wildly different ranges of similarity values, so a
normalization method is typically applied to each retrieval result to map the score into the
range [0, 1]. We find the same variety in score ranges when fusing different recommenda-
tion runs, so we also perform normalization of our recommendation scores. Typically, the
original recommendation scores scoreoriginal are normalized using the maximum and mini-
mum recommendation scores scoremax and scoremin according to the formula proposed by
Lee (1997):

scorenorm =
scoreoriginal− scoremin

scoremax − scoremin
. (6.1)

Several other normalization methods have also been proposed, such as Z-score normal-
ization and Borda rank normalization (Aslam and Montague, 2001; Renda and Straccia,
2003). However, none of these methods have been proven to result in significantly better
performance, so we use simple score-based normalization according to Equation 6.1.

We introduced six standard fusion methods in our discussion of the related work in Sub-
section 6.1.2. We select the three methods for our experiments that have shown the best
performance in related work: CombSUM, CombMNZ, and CombANZ. These standard com-
bination methods are defined as follows. Let us consider a set of N different recommenda-
tion runs R for a specific user that we want to fuse together. Each run rn in the set R consists
of a ranking of items, and each item i has a normalized recommendation score score(i, rn) in
that run rn. Let us also define the number of hits of an item in R as h(i, R) = |{r ∈ R : i ∈ r}|,
i.e., the number of runs that i occurs in. We can then represent all three combination
methods CombSUM, CombMNZ, and CombANZ using the following equation:

scorefused(i) = h(i, R)γ ·
N
∑

n=1

score(i, rn). (6.2)

The γ parameter governs which combination method we use and can take one of three
values. Setting γ to 0 is equal to the CombSUM method, where we take the sum of the
scores of the individual runs for an item i. For CombMNZ, we take the sum of the scores of
the individual runs for an item i, multiplied by the number of hits of an item h(i, R). Here, γ
is set to 1. Finally, setting γ to −1 results in the CombANZ combination method, where we
take the sum of the scores of the individual runs for an item i and divide it by the number
of hits of an item h(i, R). In other words, we calculate the average recommendation score
for each item.

Chapter 6. Combining Recommendations 114

These three combination methods are all unweighted, i.e., each run has an equal weight
in the fusion process. However, a different common fusion approach in both recommender
systems and IR research is to do a linear combination of the individual runs as proposed
by Bartell et al. (1994) and Vogt and Cottrell (1998). The benefit of weighting different
runs separately is obvious: not every run exhibits the same level of performance, and would
therefore not be assigned the same weight in the optimal combination. When we linearly
combine runs, each run is assigned a preference weight wn in the range [0, 1]. We also
test weighted versions of the CombSUM, CombMNZ, and CombANZ combination methods.
The weighted versions of the methods are defined as:

scorefused(i) = h(i, R)γ ·
N
∑

n=1

wn · score(i, rn). (6.3)

In the situations where we combine the results of two or more recommendation runs, the
optimal combination weights could be determined by a simple exhaustive parameter sweep,
as we did for our similarity fusion approach in Subsection 4.4.3. When combining more
than two runs, however, performing an exhaustive search for the optimal weights quickly
becomes intractable, as it is exponential in the number of weights. We therefore used
a random-restart hill climbing algorithm to approximate the optimal weights for all our
fusions runs (Russel and Norvig, 2003). We randomly initialized the weights for each run,
then varied each weight between 0 and 1 with increments of 0.1. We selected the value
for which the MAP score is maximized and then continued with the next weight. The order
in which run weights were optimized was randomized, and we repeated the optimization
process until the settings converged. We repeated this process 100 times, because the simple
hill climbing algorithm is susceptible to local maxima. We used our 10-fold cross-validation
setup to determine these optimal weights. We then selected the weights that result in the
best performance and generated the recommendations on our final test set using these
optimal weights.

6.3 Selecting Runs for Fusion

After deciding how to fuse recommendation runs together in the previous section, we then
need to determine which runs we should fuse together. We let ourselves be guided here
by the intuition brought forward in the work of Belkin et al. (1993) and Ingwersen and
Järvelin (2005), who argue that recommendations generated using cognitively dissimilar
representations and algorithms, i.e., that touch upon different aspects of the item recom-
mendation process yield the best fused results. We consider two aspects of recommendation
in our selection of recommendation runs: representations and algorithms. For instance, we
consider item-based filtering runs that use transaction patterns as a source of item similarity
to be the same algorithmically as item-based filtering runs that use tag overlap similarities,
but different in the way they represent the users and items in the system. Our two hybrid
filtering approaches on the other hand use the same metadata representation of the system

Chapter 6. Combining Recommendations 115

content, but are different algorithms2. We do not consider fusing runs that do not differ on
at least one of these dimensions. For instance, combining two user-based filtering runs that
both use transaction patterns for finding the nearest neighbors and only differ in the type of
weighting is not likely to result in improved recommendations after fusion. Table 6.2 shows
which fusion experiments we perform.

Table 6.2: An overview of our ten fusion experiments. The second and third columns
denote if the fusion experiment fuses together runs using different representations or dif-
ferent algorithms respectively.

Run ID Diff. repr. Diff. alg. Description

Fusion A No Yes Best user-based and item-based filtering runs based on usage
similarity (from Section 4.3).

Fusion B No Yes Best user-based and item-based filtering runs based on tag over-
lap similarity (from Subsection 4.4.1).

Fusion C Yes Yes Best usage-based and tag overlap runs together.
Fusion D No Yes Best content-based filtering runs (from Subsection 5.2.1).
Fusion E No Yes Best user-based and item-based filtering runs based on

metadata-based similarity (from Subsection 5.2.2).
Fusion F Yes Yes Best content-based and hybrid filtering runs together.
Fusion G Yes Yes Best folksonomic and metadata-based runs together.
Fusion H Yes Yes All four best runs from fusion experiments A and B together.
Fusion I Yes Yes All four best runs from fusion experiments D and E together.
Fusion J Yes Yes All eight best runs from fusion experiments A, B, D, and E.

In the first seven of our fusion experiments we fuse only pairs of best-performing runs
within a specific set of runs. From Chapter 4, for instance, we combine the best user-based
and item-based runs for the similarity representations: usage-based and tag overlap. We
also combine the best runs of each representation type. We perform three similar fusion
experiments for Chapter 5. Fusion experiment G then combines the best runs from Chapter
4 and 5 together. In addition to these seven pairwise fusion runs, we also experiment
with fusing the best four runs from each chapter together in fusion experiments H and I
respectively. Finally, we fuse all eight best runs from chapters 4 and 5 together. This results
in a total of ten experiments.

6.4 Results

Table 6.3 lists the results of our fusion experiments. What we see is that, overall, fusing
recommendation results is successful: in 36 out of 40 fusion runs we find a performance
increase over the best individual runs. The best fusion runs on our four data sets show
improvements ranging from 14% to 73% in MAP scores. When we take a look at the three
different fusion methods, we see that CombSUM and CombMNZ both consistently provide
good performance, and that they outperform each other in half of the cases. The difference
between the two is never significant. In contrast, the CombANZ method performs poorly
across the board: only on the Delicious data set does it achieve reasonable performance in

2Even though they are both memory-based algorithms, we consider user-based and item-based filtering to
be different algorithms.

Chapter 6. Combining Recommendations 116

Table 6.3: Results of our fusion experiments. Reported are the MAP scores and the best-
performing fusion methods for each set of fusion experiments are printed in bold. Boxed
runs are the best overall. Significant differences are calculated over the best individual
runs of each fusion run. The percentage difference between the best fusion experiment
and the best individual run from the previous chapters is indicated in the bottom row.

Run Method
bookmarks articles

BibSonomy Delicious BibSonomy CiteULike

Fusion A

CombSUM 0.0282È 0.0050È 0.0910È 0.0871È

CombMNZ 0.0249È 0.0065È 0.0924È 0.0871È

CombANZ 0.0175È 0.0043È 0.0687È 0.0691È

Weighted CombSUM 0.0362È 0.0056È 0.0995È 0.0949Í

Weighted CombMNZ 0.0336È 0.0065È 0.1017È 0.0947Í

Weighted CombANZ 0.0303È 0.0043È 0.0924È 0.0934Í

Fusion B

CombSUM 0.0360È 0.0024È 0.1062È 0.0788È

CombMNZ 0.0350È 0.0032È 0.1104È 0.0801È

CombANZ 0.0245È 0.0023È 0.0904È 0.0560Ï

Weighted CombSUM 0.0374È 0.0102È 0.1171È 0.0945Í

Weighted CombMNZ 0.0434È 0.0093È 0.1196È 0.0952Í

Weighted CombANZ 0.0314È 0.0105È 0.1028È 0.0798È

Fusion C

CombSUM 0.0424È 0.0102È 0.1543È 0.1235Î

CombMNZ 0.0389È 0.0061È 0.1453È 0.1239Î

CombANZ 0.0229È 0.0057È 0.0787È 0.0896È

Weighted CombSUM 0.0482È 0.0109È 0.1593È 0.1275Î

Weighted CombMNZ 0.0477È 0.0115 È 0.1529È 0.1278Î

Weighted CombANZ 0.0305È 0.0089È 0.1262È 0.0973È

Fusion D

CombSUM 0.0322È 0.0020È 0.1273È 0.0883Ï

CombMNZ 0.0320È 0.0021È 0.1273È 0.0884Ï

CombANZ 0.0257È 0.0013È 0.0142È 0.0112È

Weighted CombSUM 0.0388È 0.0035È 0.1303È 0.1005È

Weighted CombMNZ 0.0387È 0.0037È 0.1302È 0.1008È

Weighted CombANZ 0.0311È 0.0038È 0.1127È 0.0371È

Fusion E

CombSUM 0.0410È 0.0051È 0.1314È 0.0889È

CombMNZ 0.0371È 0.0037È 0.1349È 0.0926Í

CombANZ 0.0247È 0.0036È 0.0636È 0.0464Ï

Weighted CombSUM 0.0514È 0.0051È 0.1579È 0.0908Î

Weighted CombMNZ 0.0473È 0.0043È 0.1596È 0.0945Î

Weighted CombANZ 0.0323È 0.0042È 0.1028È 0.0636È

Fusion F

CombSUM 0.0418È 0.0049È 0.1590È 0.1117Î

CombMNZ 0.0415È 0.0050È 0.1593È 0.1099Í

CombANZ 0.0142È 0.0023È 0.0313Ï 0.0284È

Weighted CombSUM 0.0492È 0.0051È 0.1600È 0.1127Î

Weighted CombMNZ 0.0494È 0.0056È 0.1599È 0.1136Í

Weighted CombANZ 0.0379È 0.0038È 0.1475È 0.0699È

Fusion G

CombSUM 0.0470È 0.0051È 0.1468È 0.1511Î

CombMNZ 0.0472È 0.0046È 0.1404È 0.1448Î

CombANZ 0.0235È 0.0051È 0.1368È 0.0084È

Weighted CombSUM 0.0524È 0.0102È 0.1539È 0.1556Î

Weighted CombMNZ 0.0539È 0.0109È 0.1506È 0.1478Î

Weighted CombANZ 0.0421È 0.0098È 0.1430È 0.0866È

Fusion H

CombSUM 0.0441È 0.0049È 0.1137È 0.1064È

CombMNZ 0.0463È 0.0047È 0.1129È 0.1117Î

CombANZ 0.0134È 0.0041È 0.0627È 0.0540Ï

Weighted CombSUM 0.0619È 0.0077È 0.1671È 0.1276Î

Weighted CombMNZ 0.0616È 0.0092È 0.1409È 0.1286Î

Weighted CombANZ 0.0247È 0.0069È 0.1063È 0.0901È

Fusion I

CombSUM 0.0507È 0.0042È 0.1468È 0.1057È

CombMNZ 0.0502È 0.0035È 0.1479È 0.1077È

CombANZ 0.0171È 0.0027È 0.0049È 0.0084È

Weighted CombSUM 0.0565È 0.0065È 0.1749È 0.1188Î

Weighted CombMNZ 0.0559È 0.0052È 0.1716È 0.1157Í

Weighted CombANZ 0.0307È 0.0033È 0.1206È 0.0454È

Fusion J

CombSUM 0.0507È 0.0056È 0.1617È 0.1211È

CombMNZ 0.0502È 0.0062È 0.1613È 0.1260Í

CombANZ 0.0085È 0.0027È 0.0163Ï 0.0163Ï

Weighted CombSUM 0.0681È 0.0090È 0.1983Í 0.1531Î

Weighted CombMNZ 0.0695 È 0.0086È 0.1904Í 0.1381Î

Weighted CombANZ 0.0309È 0.0039È 0.0954È 0.0589È

% Change over best individual run +72.9% +13.9% +31.3% +57.6%

Chapter 6. Combining Recommendations 117

some cases. The CombANZ method performs especially poorly on the CiteULike data set: in
many cases it performs significantly worse than the individual runs. When we compare the
unweighted combination methods against the weighted combination method, we find that
the latter consistently outperform the unweighted fusion approaches. In some cases, these
differences are statistically significant, as is the case in fusion run J for BibArt and CiteULike.
Here, the weighted CombSUM runs achieve the data set-best MAP scores of 0.1983 and
0.1556 respectively, which are significantly higher than the unweighted CombSUM runs at
0.1617 (p = 0.04) and 0.1211 (p = 1.9 ·10−6). This confirms the findings of others such as
Vogt and Cottrell (1998) and Kamps and De Rijke (2004) who found similar advantages of
weighted combination methods. Typically, the best performing component runs are assigned
the higher weights than the other runs. The optimal weights for the 120 different weighted
combination runs are included in Appendix C.

We considered two different recommendation aspects when deciding which runs to com-
bine: representations and algorithms. Pairwise fusion runs A, B, D, and E all combine
different algorithms that use the same representations, whereas runs C, F, and G combine
pairs of runs that vary both in representation and algorithm. The results show that the latter
type of fusion, where different recommendation aspects are combined consistently performs
better than when only one of the aspects is varied among the paired runs. We observe the
same thing for runs H, I, and J, that combine more than two runs at the same time. Run
J combines eight different runs that represent six different algorithms and four different
types of representations, and achieves the best overall MAP scores on three of our four data
sets. On the Delicious data set though, we find that increasing the number of runs to be
combined is not always beneficial: we see better performance on the pairwise B, C, and G
fusion runs than on the fusion runs that combine more individual runs.

In the next subsection we extend our analysis from determining which weighted combina-
tion methods work best to why these methods provide such superior performance (Subsec-
tion 6.4.1). Then, in Subsection 6.4.2, we compare the best weighted combination methods
to the similarity fusion and hybrid filtering techniques introduced in Subsection 4.4.3 and
Subsection 5.2.2 respectively.

6.4.1 Fusion Analysis

While it is useful to determine exactly which combination methods provide the best perfor-
mance, it would be equally interesting and useful to find out what it is exactly that makes
fusion outperform the individual runs. Belkin et al. (1993) provides two different rationales
for the success of fusion approaches that we already mentioned in Section 6.1. The first is
a precision-enhancing effect: when multiple runs are combined that model different aspects
of the task, the overlapping set of retrieved items are more likely to be relevant. In other
words, more evidence for the relevance of an item to a user translates to ranking that item
with higher precision. The second rationale is a recall-enhancing effect, and describes the
phenomenon that multiple runs that model different aspects will retrieve different set of
relevant items. Fusing these individual runs can then merge these sets and increase recall
of the relevant items.

Chapter 6. Combining Recommendations 118

Let us zoom in on two of the more successful combination runs, and analyze why we see the
improvements that we do. We select two runs that significantly improve over the individual
runs: (1) fusion run G for CiteULike, where we combine the best folksonomic recommen-
dation run with the best metadata-based run, and (2) fusion run J for BibArt, where we
combine all eight best individual runs from A, B, D, and E. Both runs combine different
algorithms and different representation types. In our analysis we take an approach simi-
lar to Kamps and De Rijke (2004) who analyzed the effectiveness of different combination
strategies for different European languages. We manipulate our results in two different
ways before the MAP scores are calculated to highlight the improvements in precision and
recall due to fusion. Each time we compare the fused run with each of the individual runs
separately to determine the effects of those runs.

For identifying the enhancements due to increased precision, we ignore the ranking of items
that did not occur in the individual run in our calculation of the MAP scores. This neutral-
izes the effect of additionally retrieved items and isolates the contribution of items receiving
a better ranking (Kamps and De Rijke, 2004). Table 6.4 shows the results of our analysis
for the two fusion runs, and the fourth column shows the MAP scores attributed to better
ranking of the items that were originally present. For example, if we disregard the addition-
ally retrieved items from the fused run in the top table, and only look at the relevant items
already retrieved by run 2, we see that for run 2 we get a MAP score of 0.1546. This is an
increase of 56.6% in MAP score over the original MAP score of 0.0987, which is due to a
better ranking of the items retrieved by run 2.

Table 6.4: Results of our fusion analysis. For each individual run we report the origi-
nal MAP score, the total number of relevant retrieved items by the run, the MAP score
attributed to enhanced precision, and the MAP score attributed to enhanced recall.

CiteULike – Fusion run G – Weighted CombSUM
Run Original MAP Relevant docs Precision-enh. MAP Recall-enh. MAP

Run 1 0.0887 579 0.1343 +51.3% 0.1084 +22.1%
Run 2 0.0987 791 0.1546 +56.6% 0.0992 +0.5%
Fused run 0.1556 791 - -

Bibsonomy bookmarks – Fusion run J – Weighted CombSUM
Run Original MAP Relevant docs Precision-enh. MAP Recall-enh. MAP

Run 1 0.0853 86 0.1889 +121.5% 0.0937 +9.8%
Run 2 0.0726 92 0.1501 +106.7% 0.1071 +47.5%
Run 3 0.0452 55 0.1315 +190.9% 0.1123 +148.5%
Run 4 0.1084 55 0.1355 +25.0% 0.1685 +55.4%
Run 5 0.1261 115 0.1981 +57.1% 0.1263 +0.2%
Run 6 0.1173 111 0.1970 +67.7% 0.1186 +1.1%
Run 7 0.0404 66 0.1709 +323.0% 0.0638 +57.9%
Run 8 0.1488 90 0.1859 +24.9% 0.1591 +6.9%
Fused run 0.1983 115 - -

For identifying the enhancements due to increased recall, we look at the contributions the
items newly retrieved by the fusion run make to the MAP score. This means we treat the
items retrieved by an individual run as occurring at those positions in the fused run as well.
Any increases in MAP are then due to newly retrieved items that were not present in the

Chapter 6. Combining Recommendations 119

individual run, i.e., increased recall, and not due to a better ranking because of combined
evidence (Kamps and De Rijke, 2004). These MAP scores are listed in the sixth column in
Table 6.4. For example, if we consider only the additionally retrieved items from the fused
run in the top table compared to run 1, we see that for run 1 we get a MAP score of 0.1084.
This is an increase of 22.1% in MAP score over the original MAP score of 0.0887, which is
due to the improved recall of the fusion run.

The results in Table 6.4 show that combining different runs increases the number of rele-
vant items retrieved by the combination run (third column). However, this increased recall
does not necessarily mean that the improvement in the MAP scores is also due to these
additionally retrieved items. We see from the adjusted MAP scores that both precision- and
recall-enhancing effects are present. However, fusion clearly has a stronger effect on in-
creasing the precision of the recommendations, and the increases in MAP score are almost
always due to a better ranking of the documents. These results for these two fusion runs
are representative for other fusion runs that (significantly) improved over their component
runs. In addition, our findings confirm those of Kamps and De Rijke (2004): most of the
effects of fusion they observed were also due to the improved ranking of the documents.

6.4.2 Comparing All Fusion Methods

Earlier in this thesis, in Subsections 4.4.3 and 5.2.2, we already proposed two other fusion
approaches. The first, similarity fusion, was a feature combination approach and involved
fusing two similarity matrices together in their entirety. The second, hybrid filtering, was
a feature augmentation approach and used content-based user and item similarities in a
CF algorithm. How do these two approaches stack up against our weighted fusion runs
from this chapter? Table 6.5 compares the best fusion runs of this chapter for each data set
against the best runs of the other two fusion approaches.

Table 6.5: Comparison of our three different approaches to recommender systems fusion.
Reported are the MAP scores and the best-performing fusion method for for each data set
is printed in bold. Significant differences are calculated between the best and second-best
runs for each data set.

Run
bookmarks articles

BibSonomy Delicious BibSonomy CiteULike

Similarity fusion (from Section 4.4.3) 0.0350È 0.0102È 0.1210È 0.0791È

Hybrid filtering (from Section 5.2.2) 0.0399È 0.0039È 0.1510È 0.0987È

Weighted run fusion 0.0695È 0.0115È 0.1983Í 0.1531Î

% Change over second best run +74.2% +12.7% +31.3% +55.1%

We can clearly see that taking a weighted combination of recommendation runs is superior
to the other two approaches. This difference is significant on both the BibArt and CiteULike
data sets, and the weighted run fusion approach is also significantly better than the hybrid
filtering approach on the BibBoo data set.

Chapter 6. Combining Recommendations 120

Finally, we would like to remark that, except for the Delicious data set, weighted run fusion
outperforms the tag-aware fusion approach of Tso-Sutter et al. (2008). These improvements
are statistically significant (p < 0.05) on the BibArt and CiteULike data set.

6.5 Discussion & Conclusions

We found that combining different recommendation runs yields better performance com-
pared to the individual runs, which is consistent with the theory behind data fusion and
with the related work. Weighted fusion methods consistently outperform their unweighted
counterparts. This is not surprising as it is unlikely that every run contributes equally to the
final result, and this was also evident from the optimal weight distribution among the runs.

In addition, we observed that combination methods that reward documents that show up in
more of the base runs—CombSUM and CombMNZ—are consistently among the best per-
formers. In contrast, the CombANZ method performed worse than expected on our data
sets. One reason for this is that CombANZ calculates an average recommendation score
across runs for each item. There is no bonus for items that occur in multiple runs such as
CombSUM and CombMNZassign, and run overlap is an important indicator of item rele-
vance. In addition, the averaging of CombANZ can lead to exceptionally performing base
runs being snowed under; this is especially apparent for the fusion experiments where four
and eight runs were combined. When more runs are combined, CombANZ starts performing
worse, relative to the performance of pairwise fusion runs with CombANZ.

A third finding from our fusion experiments was a confirmation of the principle put for-
ward by Ingwersen and Järvelin (2005) and Belkin et al. (1993): it is best to combine
recommendations generated using cognitively dissimilar representations and algorithms,
touching upon different aspects of the item recommendation process.

We explored two different aspects to recommendation, representation and the choice of
algorithm, and indeed found that runs that combine multiple, different recommendation
aspects perform better than runs that consider variation in only one recommendation aspect.
We also observed that for two data sets, BibBoo and BibArt, combining more runs tends
to produce better performance. Here, the best performing fusion runs were those that
combined eight base runs that varied strongly in the type of algorithm and representation.

A separate analysis confirmed that most of the gains achieved by fusion are due to the
improved ranking of items. When multiple runs are combined, there is more evidence
for the relevance of an item to a user, which translates to ranking that item with higher
precision. Improved recall plays a much smaller role in improving performance. Overall,
we find strong evidence for the Chorus effect in our experiments and, to a lesser extent,
support for the Ranking effect. The lack of recall-related improvements suggests that we do
not see the Dark Horse effect occurring in our fusion experiments.

Chapter 6. Combining Recommendations 121

6.6 Chapter Conclusions and Answer to RQ 3

We observed earlier in Chapters 4 and 5 that combining different algorithms and repre-
sentations tends to outperform the individual approaches. Guided by our third research
question and its subquestion, we examined this phenomenon in more detail in this chapter.

RQ 3 Can we improve performance by combining the recommendations gen-
erated by different algorithms?

RQ 3a What is the best recipe for combining the different recommendation
algorithms?

We found a positive answer to RQ 3: combining different recommendation runs yields better
performance compared to the individual runs on all data sets. In answer to RQ 3a, we
identified several ingredients for successfully combining recommendation algorithms, such
as combining approaches that cover different aspects of the item recommendation task. By
combining different algorithms and different representations of the data, we achieved the
best results. We compared weighted fusion methods with unweighted fusion methods and
found that weighted methods performed best. This is understandable, since not every run
contributes equally to the final result. Another ingredient for successful fusion is using a
combination method that rewards documents that show up in more of the individual runs,
harnessing the Chorus and Authority effects. After a detailed analysis, we learned that these
performance improvements were largely due to a precision-enhancing effect: the ranking
of overlapping items improves when they are retrieved by more runs. While fusion also
increases recall, this has only a weak effect on performance.

II
GROWING PAINS: REAL-WORLD ISSUES IN

SOCIAL BOOKMARKING

So far in this thesis, we have focused on recommendation in the social bookmarking sce-
nario from a rather idealized perspective. All of the experiments described in the previous
chapters were performed on snapshots of the respective social bookmarking websites. We
froze the situation at a certain point in time to enable a fair comparison between the differ-
ent recommendation algorithms. In real life, however, a social bookmarking website is far
from static. Delicious, for instance, is one of the most popular social bookmarking services
and received an average of 140,000 posts per day in 2008 according to the independently
sampled data collected by Philipp Keller3.

In addition to freezing our datasets, we also implicitly assumed that all items in our datasets
were unique and of equal quality, at least from the viewpoint of the recommendation algo-
rithm. However, with the dynamic growth of social bookmarking also emerged its growing
pains. One such problem is spam, and social bookmarking services—as is inevitable for
nearly any website supporting user interaction—also suffer from this problem. Here, mali-
cious users add items designed to mislead, or items that the site’s genuine users do not wish
to receive. Obviously, these spam items should never be recommended to any user, but how
serious is this problem? What is the proportion of spam items on social bookmarking web-
sites and does it pose a problem for recommendations if these spam items are not detected,
demoted, or prevented? A second possible problem for social bookmarking is the presence
of duplicates. Users rarely take the time to check if the items they posted already exist on
the social bookmarking website and many websites do not offer any user interface mecha-
nisms for detecting duplicates. However, the question may be raised: does the presence of
duplicate content dilute the connections between users? And if so, (1) how can we detect
these duplicates, and (2) how does this influence the recommendation process?

In Part II of this thesis, we will broaden our narrow perspective on recommendation and
investigate the effects of the aforementioned growing pains of social bookmarking from a
recommendation perspective. Both issues are addressed separately in the next two chapters
and come with their own research questions.

3Available at http://deli.ckoma.net/stats; last visited January 2009.

123

http://deli.ckoma.net/stats

Part II. Growing Pains: Real-world Issues in Social Bookmarking 124

RQ 4 How big a problem is spam for social bookmarking services?

RQ 5 How big a problem is the entry of duplicate content for social bookmark-
ing services?

This part of the thesis is organized as follows. In Chapter 7 we look at how pervasive spam is
in the social bookmarking services. Moreover, we focus on how we can detect such content
automatically, and what kind of effect spam has on the recommendation process. Chapter 8
follows a similar path in assessing the problem of duplicate content.

C
H

A
P

T
E

R 7
SPAM

The term ‘spam’ was originally used to refer to the abuse of electronic messaging systems
that started in the mid-1990s on Usenet newsgroups, and quickly crossed over to e-mail
messaging. According to conservative estimates, in the first half of 2008 around 85% of all
e-mail sent in the world was spam1. The notion of spam is subjective by nature, but we de-
fine it here as content designed to mislead the perceiver, or content that the legitimate users
of a system, site, or service do not wish to receive. Motivation for spamming can range from
making a profit through advertising and self-promotion to disruption and disparagement of
competitors (Heymann et al., 2007). Spamming is economically viable because joining the
abused systems and injecting spam content into them is straightforward in general. Spam-
ming also requires virtually no operating costs beyond the management of the automatic
spamming software. In addition, it is often difficult to hold spammers accountable for their
behavior.

Any system that relies on user-generated content is vulnerable to spam in one form or an-
other. Indeed, many other electronic systems that allow users to store, share, and find
online resources have also come under attack from spamming attempts in recent years.
Search engines, for instance, suffer increasingly from so-called spamdexing attempts with
content especially created to trick search engines into giving certain pages a higher rank-
ing than they deserve (Gyöngyi and Garcia-Molina, 2005). Spam comments are also be-
coming an increasingly bigger problem for websites that allow users to react to content,
such as blogs and video and photo sharing websites (Mishne and de Rijke, 2006). Finally,
Wikipedia—another system focusing around user-generated content—has also seen an in-
crease in research interest in automatic approaches to spam detection (Priedhorsky et al.,
2007).

Social websites and social bookmarking services have become an increasingly popular part
of the Web, but their focus on user-generated content also makes them vulnerable to spam,
threatening their openness, interactivity, and usefulness (Heymann et al., 2007). In this

1According to http://www.maawg.org/about/MAAWG_2008-Q2_Metrics_Report9.pdf, last visited July
21, 2009.

125

http://www.youtube.com/watch?v=anwy2MPT5RE
http://www.maawg.org/about/MAAWG_2008-Q2_Metrics_Report9.pdf

Chapter 7. Spam 126

thesis, we recognize spam to be one of the growing pains social bookmarking systems ex-
perience as they attract more users. In this chapter, we wish to find out how big of a
problem spam is for social bookmarking and whether we can automatically detect spam in
social bookmarking systems. We will also investigate whether and what kind of effect the
presence of spam has on recommendation. Are anti-spam measures necessary to protect
recommendation quality? Or do spammers form a separate clique in the social network
that has no influence on the recommendation process? This leads us to our fourth research
question and two, more specific subquestions.

RQ 4 How big a problem is spam for social bookmarking services?

RQ 4a Can we automatically detect spam content?

RQ 4b What influence does spam have on the recommendation performance?

To answer these questions we need to extend our data sets with spam labels that identify the
spam users or entries as such. For an adequate orientation we start by giving an overview of
related work of combating spam in social bookmarking websites in Section 7.1. Section 7.2
then describes our two collections and how we obtained the spam labeling necessary for our
experiments. It also describes the setup of our spam detection experiments, and contains an
analysis of the spam problem for social bookmarking services (RQ 4). Then, in Section 7.3,
we describe and evaluate a promising method of automatic spam detection using language
models (RQ 4a). In Section 7.4 we investigate the influence that spammers and spam posts
have on the recommendation quality (RQ 4b).

7.1 Related Work

Spam issues in social bookmarking services have received relatively little attention so far.
Heymann et al. (2007) were the first to examine the relationship between spam and social
bookmarking in detail. They classified the anti-spam strategies commonly in practice into
three different categories: prevention, demotion, and detection.

Prevention-based approaches are aimed at making it difficult to contribute spam content to
the social bookmarking system by restricting certain types of access through the interface
(such as CAPTCHAs2) or through usage limits (such as post or tagging quota). The nofollow
HTML attribute of hyperlinks can also serve as a spam deterrent, since it instructs search
engines that a hyperlink should not influence the link target’s ranking in the search engine’s
index, thereby removing the main motivation of spammers.

Demotion-based strategies focus on reducing the prominence and visibility of content likely
to be spam. Rank-based methods, for instance, try to produce orderings of the system’s

2A CAPTCHA is a challenge-response test used to prevent automated software from abusing online services.
This is typically done by asking humans to perform a task that is difficult for a computer to perform prop-
erly, such as deciphering distorted characters (Von Ahn et al., 2008). The word ‘CAPTCHA’ is an acronym for
‘Completely Automated Public Turing test to tell Computers and Humans Apart’.

Chapter 7. Spam 127

content that are both more accurate and more resistant to spam (Heymann et al., 2007).
A demotion-based strategy for combating spam is described by Heymann et al. (2007) and
in more detail by Koutrika et al. (2007). The authors constructed a simplified model of
tagging behavior in a social bookmarking system and compared different ranking methods
for tag-based browsing. Moreover, they investigated the influence of various factors on these
rankings, such as the proportion and behavior of spam users and tagging quota (Koutrika
et al., 2007). More importantly, they found that approaches that take into account the
agreement in tagging behavior between users are best able to decrease the influence of
spam users for single-tag queries. Heymann et al. (2007) also found that restricting users to
tag budgets—limiting the number of tags per users—decreased the influence of spammers,
although at the cost of restraining the positive impact on the system due to good user
activity.

Spam detection methods try to identify likely spam either manually or automatically, and
then act upon this identification by either deleting the spam content or visibly marking it
as such for the user (Heymann et al., 2007). Krause et al. (2008) describe, as far as we
know, the only published effort of automatic spam detection with regard to social book-
marking websites. Krause et al. investigated the usefulness of different machine learning
algorithms and features to automatically identify spam (Krause et al., 2008). They tested
their algorithms on a data dump of the BibSonomy system and found that Support Vec-
tor Machines (SVM) and logistic regression performed best on the spam detection task.
They examined the individual contribution of the different feature sets, and found that
co-occurrence features—such as the number of co-occurrences of a user with spammers
and non-spammers, and semantic features—contributed most to separating spammers from
non-spammers.

In 2008, the Discovery Challenge workshop of the ECML/PKDD conference focused on two
data mining tasks related to social bookmarking. One of these was detecting spam users
in a social bookmarking system. So far, this has been the only TREC-like initiative focus-
ing on the task of spam detection. With a total of 13 submissions, the majority of the
participants’ approaches used machine learning for the prediction task. Six out of the top
eight approaches that beat the baseline used a large variety of different content-based and
co-occurrence-based features combined with machine learning algorithms to separate the
spammers from the genuine users (Hotho et al., 2008). The seventh of the top eight submis-
sions used a graph-based algorithm for the detection task (Krestel and Chen, 2008). Our
approach, described in Bogers and Van den Bosch (2008b) and in more detail in Bogers
and Van den Bosch (2009a) (see also Section 7.3), finished fourth at the 2008 Discovery
Challenge. Wetzker (2008) analyzed a large crawl of Delicious and briefly addressed the
presence of spam in their data set. Contrary to the findings of Heymann et al. (2008a),
they found a considerable spam presence on Delicious and reported that a large proportion
of spam is created by a small number of users, suggesting automated posting routines for
these accounts.

Casting our nets a bit wider than just social websites, we can also find a wealth of other anti-
spam approaching in related fields such as blogs. Mishne et al. (2005) were among the first
to address the problem of spam comments in blogs and used language model disagreement
between the blog post itself, the comments, and any pages linked to from the comments to

Chapter 7. Spam 128

identify possible spam comments. Their work inspired our approach to spam detection in
social bookmarking. In 2006, the TREC Blog Track also paid attention to the problem of
blog spam (Ounis et al., 2006) by examining the influence of spam posts on blog retrieval.
Ounis et al. found that low performing systems were not more likely to retrieve more spam
documents than high performing systems, and that spam posts did not appear to be a major
hindrance to retrieval performance. In general, IR research on collections where a subset of
the data has been manipulated for personal gain is known as adversarial IR, because of the
opposing goals of the spammers and the search engine owners.

7.2 Methodology

To be able to answer RQ 4 and its two subquestions, we need access to data sets with
manually identified spam objects. One of the two tasks in the 2008 Discovery Challenge
was spam detection in a social bookmarking system. Here, we use the organizers’ definition
of the spam detection task to guide our experiments (Hotho et al., 2008). The goal of
the spam detection task is to learn a model that predicts whether a user is a spammer or
not. An added requirement is that the model should be able to accurately classify initial
posts made by new users, in order to detect spammers as early as possible. The decision
to identify spam in BibSonomy at the user level instead of at the post level implies that all
of a spam user’s posts are automatically labeled as spam. This decision was justified earlier
in Krause et al. (2008) by the observation that users with malicious intent often attempt
to hide their motivations by injecting non-spam posts3. In addition, Krause et al. also cite
workload reduction as a reason for their decision to classify spam at the user level. The
2008 Discovery Challenge organizers report the following guidelines4 for labeling users as
spammers.

“ If we have the impression, that the user tries to advertise some of his web
sites, tries to get backlinks to pages with a lot of google ads, or add links to
offensive stuff etc. then we set all posts of this user ’private’ and flag him as
a spammer. ”

In the experiments described in this chapter, we use the setup of the 2008 Discovery Chal-
lenge for our spam detection task and classify spam at the user level in both our BibSonomy
and our CiteULike data set, to make for a fair comparison of our results. In the next subsec-
tions, we describe our data collection process (Subsection 7.2.1), our data representation
format (Subsection 7.2.2), and how we evaluate the spam detection task (Subsection 7.2.3).

3Krause et al. were also the organizers of the 2008 Discovery Challenge, hence the same justification applies.
Note, however, that the results reported in their 2008 paper were not achieved on the same data set as the one
made available in the Discovery Challenge.

4As described in https://mail.cs.uni-kassel.de/pipermail/rsdc08/2008-May/000005.html

https://mail.cs.uni-kassel.de/pipermail/rsdc08/2008-May/000005.html

Chapter 7. Spam 129

7.2.1 Data Collection

Automatic spam classification approaches typically demand a training or seed set to learn
to predict spam characteristics (Heymann et al., 2007). So for us to be able to test our
spam detection approach, we needed access to data sets with manually identified spam
objects. We obtained such spam labels for data sets based on two social bookmarking web-
sites: BibSonomy and CiteULike. The BibSonomy collection was pre-labeled as spam by the
organizers of the 2008 Discovery Challenge. For CiteULike we annotated a sizable part of
the collection ourselves. For Delicious, however, the considerably larger size of that data set
and the stronger spam filtering policies (Heymann et al., 2008a) made it impractical to do
the same. Hence, we excluded Delicious from this study. Table 7.1 provides statistics for the
presence of spam in the CiteULike and BibSonomy collections. In both data sets spammers
add two to three times as many tags to their posts on average than genuine users, thereby
confirming what was already signaled in Krause et al. (2008): that tag count seems to be
an informative feature for spam prediction. In the next two paragraphs we describe how
we obtained our spam annotations and the specific characteristics of the two data sets.

Table 7.1: Spam statistics of the BibSonomy and CiteULike data sets. All CiteULike items
were treated as references to scientific articles, since there is no clear-cut distinction be-
tween bookmarks and references on CiteULike. For BibSonomy, these are the counts of the
training material combined with the official test set.

BibSonomy CiteULike

posts 2,102,509 224,987
bookmarks, spam 1,766,334 -
bookmarks, clean 177,546 -
references, spam 292 70,168
references, clean 158,335 154,819

users 38,920 5,200
spam 36,282 1,475
clean 2,638 3,725

average posts/user 54.0 43.3
spam 48.7 47.6
clean 127.3 41.6

tags 352,542 82,121
spam 310,812 43,751
clean 64,334 45,401

average tags/post 7.9 4.6
spam 8.9 7.7
clean 2.7 3.2

BibSonomy One of the data sets we used in our spam detection experiments was the
BibSonomy data set, as introduced earlier in Subsection 3.2.2. It was supplemented with
information about spam content as part of the 2008 ECML/PKDD Discovery Challenge,
and contained flags that identified users as spammers or non-spammers. The Discovery
Challenge organizers were able to collect data of more than 2,600 active users and more
than 36,000 spammers by manually labeling users5. This reveals that the BibSonomy data

5This data set corresponds to the one described in Table 3.1.

Chapter 7. Spam 130

set is strongly skewed towards spam users with almost 14 spam users for each genuine
user. Table 7.1 also shows that spam users in BibSonomy clearly prefer to post bookmarks,
whereas legitimate users tend to post more references.

CiteULike Our self-crawled CiteULike data set did not include pre-labeled spam users or
posts as the BibSonomy data set did. We therefore set out to collect our own spam labels
for this data set. Here, we faced the same choice as the team organizing the Discovery
Challenge: at which level of the folksonomy should we identify spam usage—users, items,
tags, or individual posts? Our CiteULike collection contains over 1 million posts and over
800,000 items, and going through all of these was not practical. Judging all of the more
than 232,000 tags was also infeasible, in part because it is simply not possible for many
tags to unequivocally classify them as spam or non-spam. For instance, while many spam
entries are tagged with the tag sex, there are also over 200 valid references on CiteULike
that are tagged with sex. We therefore aimed to obtain an estimate of the pervasiveness
of spam on CiteULike by identifying spam users. Judging all 25,375 users in the CiteULike
data set would still be impractical, so we randomly selected 5,200 users (∼20%) from the
data set and asked two annotators to judge these users on whether they were spammers or
not. Each user was judged by only a single annotator to save time. Appendix A.2 goes into
more detail about the spam annotation process, such as our annotation guidelines and the
interface we used.

Of the 5,200 users in our CiteULike subset, 1,475 (or 28.1%) were spam users, which is
a smaller proportion than in BibSonomy. The numbers in Table 7.1 are reported for this
20% sample of CiteULike users. An extrapolation of these proportions to the full CiteULike
data set results in an estimated 7,200 spam users who posted references to CiteULike. To
assess the accuracy of this estimation we may look at the problem from a different angle. As
already remarked, certain spam references are removed quickly from the database by the
CiteULike administrators, resulting in 404 Not Found errors when crawling their reference
pages. During metadata crawling of all 803,521 references in our November 7, 2007 data
dump, about 26.5% of the references returned 404 Not Found errors. A second round of re-
crawling the metadata of these 213,129 missing references did not change this proportion.
While spam removal is not necessarily the only reason for a 404 Not Found error, we found
that 18.7% of the 7,671 users that posted these 213,129 missing references were spam
users identified in our annotation process, which is commensurate with the 20% sample we
took. Furthermore, we found that 60,796 of the missing references (or 28.5%) belonged to
the positively identified spam users. These estimates of 7,671 spam users (or 30.2%) and
213,129 spam references (or 26.5%) suggest that our extrapolation of spam presence on
CiteULike is reliable.

7.2.2 Data Representation

After collecting the data we created a single representation format for all posts, capturing
all relevant metadata in separate fields. As mentioned before, two types of resources can
be posted to BibSonomy: bookmarks and BibTeX records, the latter with a magnitude more
metadata available. Because there is no such clear distinction in our CiteULike data set, we

Chapter 7. Spam 131

decided to treat BibTeX records and bookmarks the same and thus use the same format to
represent both. We represented all resource metadata in an TREC-style SGML format using
four fields: TITLE, DESCRIPTION, TAGS, and URL. URLs were pre-processed before they were
used: punctuation was replaced by whitespace and common prefixes and suffixes like www,
http://, and .com were removed. Figure 7.1 shows examples of clean and spam posts in
our SGML representation. Whereas the clean post in Figure 7.1(a) is clearly recognizable as
a regular scientific article, the emphasis on commercial incentives in Figure 7.1(b) signals
the spam nature of that post.

!"#$%&&

&&&&!"#$'#%&()*+),&!-"#$'#%&&

&&&&!./.01%&&

&&&&&&&&2345&$65&24&$677&6&89:;4<&847=>#?@65ABA5@&&

&&&&!-./.01%&&

&&&&!"18$C/D./#'%&&

&&&&&&&&1$E0&$6?7F:&G4?:345:F5&65H&I?65JA:&K497A@345&&

&&&&!-"18$C/D./#'%&&

&&&&!.EG8%&&

&&&&&&&&:46?J3&6@45;:&A?&;FHF&&

&&&&!-.EG8%&&

&&&&!LC0%&&

&&&&&&&&:M?A5@4?7A5N&<4;6M?4::&FM45O?7&6:M&@45?4&6?PJ74&A::5&&

&&&&&&&&QRQ,&)+*R&SF7O<4&,TQU&:M6@4&(Q(&&

&&&&!-LC0%&&

!-"#$%&

(a) Clean post

!"#$%&

&&&&!"#$'#%&())*+,-&!."#$'#%&

&&&&!/0/12%&&

&&&&&&&&345&/4&6789:&/;<=>&/4&?47;&694@&&

&&&&!./0/12%&

&&&&!"2A$B0C/0#'%&&

&&&&&&&&D&&

&&&&!."2A$B0C/0#'%&

&&&&!/EFA%&&

&&&&&&&&G94@@8H@&:8;I>J4;K&L;4M4N4H&J;<=>&&

&&&&!./EFA%&

&&&&!OB1%&&

&&&&&&&&5IGL;4HI5P&IG7P8HIPP&P8JIL;4M4N4H&&

&&&&&&&&(--Q,(,-345/46789:/;<=>/4?47;694@&&

&&&&!.OB1%&

!."#$%&

(b) Spam post

Figure 7.1: Examples of clean and spam posts in our SGML representation.

A wide variety of metadata fields were available for the posts in the BibSonomy data set.
For the bookmarks, the title information was taken from the BOOK_DESCRIPTION field in the
MySQL dump, whereas the TITLE field was used for the BibTeX records. The DESCRIPTION
field was filled with the BOOK_EXTENDED field for bookmarks, whereas the following fields
were used for the BibTeX records: JOURNAL, PUBLISHER, ORGANIZATION, DESCRIPTION, ANNOTE,
AUTHOR, EDITOR, BIBTEXABSTRACT, BOOKTITLE, HOWPUBLISHED, ADDRESS, SCHOOL, SERIES, and
INSTITUTION. For both resource types all tags were added to the TAGS field. The URLs were
extracted from the BOOK_URL and URL fields and pre-processed as described above.

Our post representations were significantly poorer for the CiteULike data set: since spam
references were removed from the CiteULike website, we could not crawl the associated
metadata of the spam references (cf. Subsection 7.2.1). Full metadata was available for the
clean references, but using all metadata of the clean posts and only the tags of the spam
posts would yield an unfair comparison. Any classifier would then simply learn a model
where the presence or absence of metadata determines the predicted spam label. A system
that predicts a post to be spam when it is missing metadata is unlikely to be very useful in
any real-world situation. We therefore used only the tags for all CiteULike posts, clean and
spam alike.

Chapter 7. Spam 132

7.2.3 Evaluation

To evaluate our different approaches and optimized parameters, we divide each data set into
a training set, a validation set, and a test set. Our models are trained on the training set and
parameters were optimized on the validation set to prevent overfitting. For the BibSonomy
data set, an official test set was supplied as part of the 2008 Discovery Challenge as well as
training material, so we used this partitioning. We randomly selected 80% of the users from
the training material for our training set and assigned the remaining 20% to our validation
set. This gave us a training set of 25,372 users, a validation set of 6,343 users, and a test
set of 7,205 users. For the CiteULike data set, we randomly selected 60% of all users for
our training set, 20% for our validation set, and assigned the remaining 20% to our test set.
This corresponded to 4,160 training users, and 520 validation set users, and 520 users in
the CiteULike test set. For the final predictions on the test sets we used only the training
sets we created to train our algorithm and generate the spam labeling predictions.

We evaluated our approaches on the validation and test sets using the standard measure of
AUC (area under the ROC curve). The ROC curve plots the true positive rate of a classifier
in the range [0, 1] against the false positive rate in the domain [0, 1]. The diagonal in this
graph represents the performance of a classifier that randomly guesses the output classes.
Curves closer to the top left corner are better; a perfect ROC curve would go up horizontally
from (0,0) to (0,1) and then vertically from (1,0) to (1,1). The AUC score represent the
area under the ROC curve where 1.0 is the perfect score. We optimized k using AUC rather
than on measures like the F-score, because AUC is less sensitive to class skew than F-score
(Fawcett, 2004). This is especially relevant given that the data is rather skewed indeed,
especially in the case of BibSonomy, with 12 spam users to every clean one.

7.3 Spam Detection for Social Bookmarking

Our approach to spam detection was inspired by the approach of Mishne et al. (2005)
for dealing with spam in blog comments. It is based on the intuitive notion that spam
users will use different language than ‘legitimate’ users when posting resources to a social
bookmarking system. We detect new spam users in the system by first ranking all the old
users in the system by the KL-divergence of the language models of their posted content and
the language models of the new user’s posts. We then look at the spam labels assigned to the
most similar users in the system to predict a spam label for the new user. We propose using
language models at two different levels of granularity: (1) at the level of separate posts,
and (2) combined into user profiles. We will refer to these two variants of our approach as
user-level spam detection and post-level spam detection respectively.

Both variants of our approach correspond to a k-nearest neighbor classifier with KL-diver-
gence as its similarity metric. We will refer to our general approach as SPAMORY, because
it is a memory-based spam detection algorithm. Each of the two variants consist of two
steps: (1) calculating the similarity between users or posts, and (2) determining the final
classification. In the next two subsections, we describe these two steps in more detail.
Subsection 7.3.3 then presents our results, followed by a discussion in Subsection 7.3.4.

Chapter 7. Spam 133

7.3.1 Language Models for Spam Detection

Language models (Jelinek, 1990) are a class of stochastic n-gram models, generally used to
measure a degree of surprise in encountering a certain new span of text, given a training set
of text. The core of most language models is a simple n-gram word prediction kernel that,
based on a context of two or three previous words, generates a probability distribution of
the next words to come. Strong agreement between the expected probabilities and actually
occurring words (expressed in perplexity scores or divergence metrics) can be taken as
indications that the new text comes from the same source as the original training text.
Language models are an essential component in speech recognition (Jelinek, 1990) and
statistical machine translation (Brown et al., 1990), and are also an important model in
information retrieval (Ponte and Croft, 1998). In the latter context, separate language
models are built for each document, and finding related documents to queries is transformed
into ranking documents by the likelihood, estimated through their language model, that
each of them generated the query. We do the same for SPAMORY.

In generating our document language models, we have three different options for the gran-
ularity level of what span of text should be considered a document. At the most detailed
level, we can construct a language model for each individual post, match these to the incom-
ing posts, and use the known spam status of the best-matching posts already in the system
to generate a prediction for the incoming posts or users. We can also take a higher-level per-
spective and collate all of a user’s posts together to form merged documents that could be
considered “user profiles”, and generate language models of these individual user profiles.
Incoming posts or users can then be matched against the language models of spammers
and clean users to classify them as being more similar to one or the other category. A third
option—at an even higher level of granularity—would be to only consider two language
models: one of all spam posts and one of all clean posts. However, we believe this to be too
coarse-grained for accurate prediction, so we did not pursue this further.

Figure 7.2 illustrates these two variants of SPAMORY. In the user-level variant depicted in
Figure 7.2(a), the new user’s profile—the concatenated collection of posts made by this
user to the system—are matched against all existing user profiles. For each new user, this
similarity matching process results in a list of the existing users, ranked by how similar their
profiles are to the new user’s profiles in terms of language use. The users that are most
similar to the new user then determine the spam label. In this toy example, the majority of
the top ranked users are spam users, so the classifier outputs the prediction ‘Spam’.

In the post-level variant in Figure 7.2(b) the matching is done at the post level. Each of
the new user’s posts is matched separately against all the posts in the collection. For each
new post, the matching process results in a list of the existing posts, ranked by how similar
they are to the new post terms of language use. In the toy example in Figure 7.2(b) this
results in ten different ranked lists, one for each new post. For each list separately, the best
matching posts determine the spam label of the new post, resulting in a spam classification
for each of the ten new posts. The final user spam label, the level at which we want our final
predictions, is then generated by aggregating the predictions for the individual posts. In the
toy example only three of the ten new posts were classified as spam, so the final user-level
prediction is ‘Clean’.

Chapter 7. Spam 134

!"! #####$%&'#######

("! #####$%&'#######

)"! #####*+,&-#######

."! #####$%&'#######

/"! #####$%&'#######
012230415#16#

7839#:91;238#

new user!

SPAM!8<=<2>9<?@#

=>?0A<5B#

(a) User-level spam detection

!"##$!%"&'"('

)"*+*'

new user! new posts!

CLEAN!

,-''''''''./012'

3-''''''''./012'

4-''''''''5617'

8-''''''''./012'

9-''''''''./012'

:-''''''''./012'

;-''''''''./012'

<-''''''''5617'

=-''''''''./012'

*>?>#@A>+B'

?@+!C>&D'

(b) Post-level spam detection

Figure 7.2: Two variants of our spam detection approach

We used the Kullback-Leibler divergence metric to measure the similarity between the lan-
guage models. The KL-divergence measures the difference between two probability distri-
butions Θ1, Θ2 is

K L(Θ1||Θ2) =
∑

w
p(w|Θ1) log

p(w|Θ1)
p(w|Θ2)

, (7.1)

where p(w|Θ1) is the probability of observing the word w according to the model Θ1 (Man-
ning and Schütze, 1999; Mishne et al., 2005).

The Indri toolkit6 implements different retrieval methods based on language modeling
(Strohman et al., 2005). We used version 2.7 of this toolkit to perform our experiments and
construct and compare the language models of the posts and user profiles. The language
models we used are maximum likelihood estimates of the unigram occurrence probabilities.
We used Jelinek-Mercer smoothing to smooth our language models, which interpolates the
language model of a post or user profile with the language model of a background cor-
pus (Jelinek, 1990)—in our case the training collection of posts or user profiles. We chose
Jelinek-Mercer smoothing because it has been shown to work better for verbose queries
than other smoothing methods such as Dirichlet smoothing (Zhai and Lafferty, 2004). Our
user profiles and posts contain enough text to be considered verbose compared to stan-
dard IR query lengths. Preliminary experiments with Dirichlet smoothing confirmed this

6Available at http://www.lemurproject.org

http://www.lemurproject.org

Chapter 7. Spam 135

for SPAMORY, as it was consistently outperformed by Jelinek-Mercer smoothing. While it is
certainly possible to use other measures of document similarity, such as the cosine similar-
ity, preliminary experiments with the Vector Space model and the cosine similarity metric
consistently underperformed the language modeling approach. We therefore focused our
efforts on language modeling and KL-divergence for user-user and post-post similarity.

We experimented with both the user-level approach and the post-level approach as illus-
trated in Figure 7.2. At the user-level, we compared the language models of the user profiles
in our validation and test sets with the language models of the profiles in our training set.
We then obtained a ranked list of the best-matching training users for each test user. We
did the same at the post level by comparing the test post language models with the lan-
guage models of the training posts. Here, ranked lists of best-matching posts were obtained
for each test post. The similarity rankings based on the original similarity scores simoriginal

were normalized into [0, 1] using the maximum and minimum similarity scores simmax and
simmin by the formula from Lee (1997):

simnorm =
simoriginal− simmin

simmax − simmin
. (7.2)

These similarity rankings were normalized, and used as input for the spam classification
step. In our BibSonomy data set we have four different metadata fields available to gen-
erate the language models of the posts and user profiles in our training collection: title,
description, tags, and tokenized URL. In addition to these ‘complete’ runs with all fields, we
also ran experiments where we only used the information from the four fields separately.
An example would be to use only the tags from the training users and the test users. This
resulted in five different runs for BibSonomy. For CiteULike we only had the tags avail-
able, so we performed only one run here. We experimented with different combinations of
metadata fields and refer the reader to Bogers and Van den Bosch (2009a) for more details.

7.3.2 Spam Classification

After we generated the language models for all posts and user profiles, we obtained the
normalized rankings of all training documents, relative to each test post or user profile.
For each of the best-matching training documents, we used the manually assigned spam
labels (’0’ or ’1’) to generate a single spam score for the new user. The simplest method of
calculating such a score would be to output the spam label of the top-matching document.
A more elegant option would be to take the most common spam label among the top k hits.
We settled on calculating a weighted average of the similarity scores multiplied by the spam
labels, as preliminary experiments showed that this combination outperformed the other
options. Spam scores score(ui) for a user ui were calculated according to the following
equation:

score(ui) =

k
∑

r=1,r 6=i

sim(ui , ur) · label(ur)

k
, (7.3)

Chapter 7. Spam 136

where for the top k matching users ur from ranks 1 to k the similarity score sim(ui , ur)
between the user in question ui and the matching user ur is multiplied by the spam label
label(ur) of that matching user. The total weighted scores are divided by the number of
matches k, yielding a weighted average score for ui .

For post-level classification, this meant that we obtained these weighted average spam
scores on a per-incoming-post basis. To arrive at user-level spam scores, we then matched
each incoming post to a user and calculated the average per-post score for each user. In the
rare case that no matching documents could be retrieved, we resorted to assigning a default
label of no spam (‘0’). In the BibSonomy validation set, for instance, this only occurred for
0.7% of users. Our default classification for these users was ‘clean’ because 84.2% of these
users in the BibSonomy validation set were legitimate users.

After implementation of all these techniques, one question still remains: how many of the
top matching results should be used to predict the spam score? Here, our approach is
similar to a k-nearest neighbor classifier, where the number of best-matching neighbors k
determines the prediction quality. Using too many neighbors might smooth the pool from
which to draw the predictions too much in the direction of the majority class, while not
considering sufficient neighbors might result in basing too many decisions on accidental
similarities. We optimized the optimal value for k for all of the variants separately on the
AUC scores on the validation set. These optimal values of k were then used to calculate the
final scores on the test sets.

7.3.3 Results

Table 7.2 lists the outcomes of the two different variants of our SPAMORY approach on the
two collections. Since we optimized on the validation sets, we mainly focus on the test set
scores to draw our conclusions. The best performing approach on BibSonomy, at an AUC
score of 0.9661, is spam detection at the user level, using all available metadata fields. The
best post-level run on BibSonomy also used all of the data for all of the posts, and achieves
a score of 0.9536. On the CiteULike data set, the best performance at the user level and post
level yields AUC scores of 0.9240 and 0.9079, respectively. This seems to suggest that our
approach generalizes well to other data sets and social bookmarking systems. We observe
that in general, using the language models constructed at the user level outperforms using
the post-level language models. This is also visible in Figure 7.3, which shows the ROC
curves for the best user-level and post-level runs for each collection.

An interesting difference between the validation set and the test set is that using only the
tags to construct the language models yields the best performance on the validation set,
whereas performance using only tags drops markedly on the test set. Using all available
metadata fields results in a considerably more stable performance across both BibSonomy
evaluation sets. It should therefore be considered as the preferred variant.

In contrast, we observed that most of the other runs using different combinations of meta-
data fields tend to perform visibly better on either the validation or the test set. A third
interesting observation is the difference in the optimal size of the neighborhood k used to

Chapter 7. Spam 137

Table 7.2: Results of our two spam detection variants on the BibSonomy and CiteULike
data sets. Scores reported are AUC, with the best scores for each set of collection runs
printed in bold. The optimal neighborhood size k is listed for each user-level and post-level
runs. For the same set of runs, the same value of k was used in both the validation and the
test set.

Collection Fields
User level Post level

Validation Test k Validation Test k

BibSonomy

All fields 0.9682 0.9661 235 0.9571 0.9536 50
TITLE 0.9290 0.9450 150 0.9055 0.9287 45
DESCRIPTION 0.9055 0.9452 100 0.8802 0.9371 100
TAGS 0.9724 0.9073 110 0.9614 0.9088 60
URL 0.8785 0.8523 35 0.8489 0.8301 8

CiteULike TAGS 0.9329 0.9240 5 0.9262 0.9079 5

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

TP
 R

at
e

FP Rate

ROC curve (best runs)

BibSonomy, post level
BibSonomy, user level

CiteULike, post level
CiteULike, user level

Figure 7.3: ROC curves of the best-performing user-level and post-level approaches for
both collections. Curves closer to the top left corner are better; a perfect ROC curve would
go up horizontally from (0,0) to (0,1) and then vertically from (1,0) to (1,1).

predict the spam labels. In almost all cases, the post-level variants require a smaller k than
at the user level. The optimal neighborhood size for CiteULike is the same for both the
user-level and the post-level variants, and surprisingly smaller than for BibSonomy.

Comparison to Other Approaches While we have not compared SPAMORY to standard
spam detection approaches such as SVMs or Naive Bayes directly, we can use the outcome of
the spam detection task at the 2008 Discovery Challenge to measure SPAMORY against such
approaches. Our updated version of SPAMORY would have achieved the third place with an
AUC score of 0.9661, surpassed only by a ridge regression approach with extensive feature
preparation and selection, and a SVM approach to spam detection (Hotho et al., 2008). Four

Chapter 7. Spam 138

of the top eight approaches used SVM; the other three SVM approaches performed worse
than the approach described in this paper. One participant used Naive Bayes learning with
extensive feature selection, achieving slightly lower scores than our approach. Finally, one
of the participants compared five different machine learning methods on the spam detection
task, with none of the five outperforming our kNN-based approach, suggesting that SPAMORY

is competitive with other machine learning methods.

A particular advantage of our SPAMORY approach is that it could be implemented with lim-
ited effort on top of an existing social bookmarking search engine. After retrieving rele-
vant results for a user query, the top k matching results can then be used to generate the
spam classification, requiring only a lookup of predetermined spam labels. Other machine
learning approaches would require a more elaborate implementation without being able to
leverage the existing search infrastructure of a social bookmarking website.

7.3.4 Discussion and Conclusions

In this chapter we presented SPAMORY, an adversarial information retrieval approach em-
ploying language modeling to detect spam in social bookmarking websites. We started by
using language models to identify the best-matching posts or user profiles for incoming
users and posts. We then looked at the spam status of those best-matching neighbors and
used them to guide our spam classification. Our results indicate that our language model-
ing approach to spam detection in social bookmarking systems is promising, yielding AUC
scores of 0.953 and 0.966 on spam user detection. This confirms the findings of Mishne
et al. (2005), who applied a similar two-stage process using language modeling to detect-
ing blog spam, albeit on a smaller scale. With our approach and experimental setup we
have improved upon the work described in Mishne et al. (2005) in two ways. One improve-
ment is in scale: the data set we used, is several orders of magnitude larger than the one
used by Mishne et al., with 43000+ users and 2,300,000+ posts divided over two different
data sets, compared to their 50 blog posts and 1024 comments (Mishne et al., 2005). Since
SPAMORY was inspired by their approach, our results serve to confirm that using language
model similarity is a good approach for spam detection on a much larger scale as well. A
second improvement can be found in the evaluation measure used. In the data set used by
Mishne et al. 68% of the content was spam and in our two data sets these proportions were
around 93% and 28%. When evaluating on such skewed data sets it is much better to use a
measure such as AUC than to use the simple accuracy metric used by Mishne et al. (Fawcett,
2004).

Language Model Granularity We experimented with using language models at two dif-
ferent levels of granularity and found that matching at the user level and using all of the
available metadata gave the best results. In general, matching at the user level resulted in
better performance than matching at the post level for both BibSonomy and CiteULike.

This difference can be partly explained by the fact that the spam labels in both data sets
were judged and assigned at the user level, because this is the desired level of the end ap-
plication. Even if a spam user posts some ’genuine’ posts, the entire content of the spam
user should be deleted on grounds of the adversarial intentions behind them. Yet, those

Chapter 7. Spam 139

’genuine’ posts of spam users are then automatically flagged as spam, thereby introducing
more noise for the post-level classification than for the user-level classification. Depending
on whether the user’s intentions were genuine or not, the same article or website could be
posted multiple times, sometimes labeled as clean content, other times labeled as spam con-
tent. This could potentially confuse the post-level classifier, but not the user-level classifier.
Early classification of spam users at their earliest posts can therefore be expected to be less
accurate than the reported 0.95–0.96 range; post-level AUC scores suggest this accuracy
would be closer to 0.91–0.95.

A second likely explanation for the better performance of the user-level approach is meta-
data sparseness at the post level. A post-level approach is more likely to suffer from incom-
ing posts with sparse or missing metadata. For instance, although 99.95% of all posts in the
BibSonomy data set have valid tags7, this also means that it is possible for incoming posts
to have no tags. Without any tags as metadata or sparse metadata in the other fields, our
post-level SPAMORY variant cannot find any matching posts in the system. At the user level,
this is much less likely to happen: only 0.009% of all users never assign any tags. Aggregat-
ing all metadata of a user’s posts can yield sufficient metadata to base reliable predictions
on, whereas the post-level approach can be affected by this to a greater extent. Missing
tags might also be a reason for the fact that performance on CiteULike is slightly lower than
performance on BibSonomy.

Neighborhood Size When looking at the optimal neighborhood sizes k for BibSonomy,
we see that in almost all cases the post-level approaches required a smaller k than at the
user level. We believe that this is because the presence of multiple topics in user profiles.
Individual posts are usually about a single topic, whereas a user profile is composed of all
of that user’s posts, which are likely to be about multiple topics of interest. This makes
finding the related posts to an individual post easier, in the sense that it requires fewer
nearest neighbors to arrive at a prediction. At the user level, however, different parts of a
user’s profile might match up with different users already in the system, thus requiring more
nearest neighbors to arrive at a reliable prediction. For CiteULike the optimal k values are
the same for both the post level and the user level, but we have no plausible explanation
for this.

Future Work No spam detection approach can be expected to remain successful without
adapting to the changing behavior of the spammers. One way spammers could circumvent
our SPAMORY approach would be by generating metadata with a similar language model to
the clean posts in the system. This way, spammers can make it more complicated for our
approach to distinguish between themselves and genuine users. However, this also makes it
more difficult for the spammers themselves: it is very hard for a spammer to post resources
to a social bookmarking system that will be both similar to existing posts and to the language
of the spam entry (Mishne et al., 2005). In addition, such behavior could be countered by
extending our method to include the language models of the pages and documents behind

7Valid meaning with a tag other than system:unfiled, the default tag that is assigned by the system when no
tags were added by the user.

Chapter 7. Spam 140

the bookmarks8. In the case of sparse metadata, this might be able to boost performance
of the spam detection algorithm. Extending SPAMORY in such a way is one of the possible
avenues for future work. A second option would be to include extra features such as the
PageRank scores (Page et al., 1998) of the bookmarked pages, and see whether pages with
low PageRank are more predictive of spam status than others.

7.4 The Influence of Spam on Recommendation

In the previous section, we described a successful approach to the problem of detecting spam
in social bookmarking systems. Spam content is a nuisance to all parties involved but the
spammers themselves. For users, spam pollutes the result lists when searching or brows-
ing a social bookmarking website, whereas from the system administrators’ standpoint it
wastes both computing power and storage capacity. Adequate spam detection and removal
is therefore an important component of any mature social bookmarking service. Removing
spam is also a boon to the performance of a recommender system. Recommending spam
lowers the trust users place in the system, and can impair the efficiency and effectiveness of
recommendation algorithms such as CF. Removing spam users and items means they do not
have to be taken into account anymore when calculating the similarities between users and
items, severely cutting down on computation time. The question we wish to answer in this
section is how much recommendation effectiveness is weakened by the presence of spam.
In other words, how much is recommendation performance degraded by spam content, and
how often does spam content show up in the results? Our experiments here should be re-
garded as a case study and a first look into the problem of spam for item recommendation
on social bookmarking websites.

7.4.1 Related Work

Most of the related work on spam and recommendation has focused on the creation of
more robust recommendation algorithms that are less affected by spam. Spam attacks on
recommender systems are commonly referred to as shilling attacks (Lam and Riedl, 2004).
In such attacks, a malicious user creates multiple fake identities in the recommender system.
Using these fake profiles, coordinated sets of spam user profiles with ratings are injected in
such a manner that they affect the recommendations made by the system to the advantage of
the spammer. Individually, each user profile will not affect the recommendations, but, when
combined, the profiles are designed to boost certain items in favor of others. Two types
of shilling attacks are distinguished: push attacks, that attempt to promote a certain item
in the recommendations, and nuke attacks, that are aimed at downgrading specific items
(O’Mahony et al., 2004). Several robust recommendation algorithms have been proposed in
recent years (O’Mahony et al., 2004; Mobasher et al., 2006; Resnick and Sami, 2007; Bryan
et al., 2008; Mehta, 2008), and they have shown that, in general, model-based algorithms

8Although it should be noted that it is far from trivial to obtain the full text of all the source documents
linked to by the BibSonomy and CiteULike posts. Moreover, we suspect that incorporating language models
from all externally linked Web pages and documents would slow down a real-time spam filtering system to an
undesirable degree.

Chapter 7. Spam 141

are more robust to shilling attacks than memory-based algorithms. In this section we are not
interested in designing more robust recommendation algorithms, but in doing exploratory
work in quantifying the effects of spam on some of our own algorithms. We leave a more
extensive investigation and evaluation for future work.

7.4.2 Experimental Setup

Below we test the influence of spam content on recommendation using our BibSonomy
collection. In Chapter 3 we described how we created our two data sets BibBoo and BibArt
using this collection. For the experiments described in this section, we extend these data
sets with all the spam content that we filtered out for our main experiments. To make
for a fair comparison, we apply the same filtering to these data sets as we did to BibBoo
and BibArt: we only retain users with 20 items or more, and only keep items that occur
in at least 2 user profiles. The BibArt part of our BibSonomy collection hardly contains
any spam as we already showed in Table 7.1. After this filtering took place there was
virtually no spam content left, which would render a comparison using the BibArt data set
useless. Furthermore, we do not use the CiteULike data set for the experiments described
in this section. This is for two reasons. First, we only have spam labels available for a 20%
subset of our CiteULike data set. Experiments using such a small data set would not be
representative of a real world situation. Second, we do not have metadata available for the
spam entries in our CiteULike data set, making a comparison impossible for the metadata-
based approaches. This leaves us with the BibBoo data set to investigate the influence of
spam on recommendation. Table 7.3 offers a basic description of the new, spam-extended
data set compared to the old, spam-free one.

Table 7.3: Basic statistics of our spam-extended BibSonomy bookmarks data set compared
to the original spam-free data set.

Spam-free data set Spam-extended data set

users 192 4,914
items 11,165 177,139
tags 13,233 95,796
posts 29,096 634,129
avg # items per user 151.5 129.0
avg # users per item 2.6 3.5
avg # tags per user 203.3 325.2
avg # users per tag 2.9 16.7
avg # tags per item 8.4 13.3
avg # items per tag 7.1 24.6

The numbers in Table 7.3 confirm what we already saw in Table 7.1: spam users add sig-
nificantly more tags to their items than genuine users do. Moreover, in the spam data set,
users have a lower average profile size, but a higher average number of users per item. This
strongly suggests that spammers enter multiple, near-duplicate user profiles that all refer to
the same spam content, as was already suggested by O’Mahony et al. (2004). This might
indicate that spam users tend to be very similar in their behavior to each other, but perhaps
not to the genuine users.

Chapter 7. Spam 142

Which algorithms do we use to test to determine the influence that spam content has on
item recommendation? We selected the approaches from Chapters 4 and 5 that performed
best on the BibBoo data set: (1) item-based filtering using tag overlap similarity, and (2)
profile-centric content-based filtering. We selected IT-JACCARD-SIM as our similarity metric
for the item-based filtering algorithm, and optimized the neighborhood size for the spam
extended data sets using our 10-fold cross-validation setup. For the profile-centric approach
we used all of the intrinsic metadata fields for our user and item representations. Using the
spam-extended version of our BibSonomy bookmarks data set, we considered all users and
items for calculating the similarities. We only evaluated, however, on the users present in
the clean data sets, because we are not interested in how well we can recommend content
to spam users. We evaluated on MAP and on the average percentage of spam content in
the top 1, top 10, top 25, top 50, top 100, and top 1000 results. We derived a list of spam
content by assuming all the items not present in our original, spam-free data set were spam.
We know this is not a perfect assumption, as spammers tend to include ‘genuine’ posts to
throw off spam detection efforts. If these ‘genuine’ items were not in the original spam-free
data set, then they were misclassified as spam. However, we do not believe this to be a big
problem.

7.4.3 Results and Analysis

Table 7.4 contains the results of our two selected algorithms on the BibBoo data set with
and without spam. What we see is that the content-based approach is affected most by the
presence of spam: the MAP score on the spam-extended data set decreases by almost 30%
from 0.0402 to 0.0283, although the difference is not statistically significant (p = 0.060).
Surprisingly, the item-based filtering run using tag overlap achieves a slightly higher MAP
score on the spam-extended data set. The increase from 0.0370 to 0.0397 is not statistically
significant.

Table 7.4: The influence of spam on recommendation performance on our original
BibSonomy bookmarks data set and the spam-extended version. Reported are MAP scores
and the percentage of spam items at different cutoffs in the ranking.

Tag overlap Content-based

MAP on spam-free data set 0.0370 0.0402
MAP on spam-extended data set 0.0397 0.0283
Top 1 spam % 10.5% 0.0%
Top 10 spam % 15.3% 4.2%
Top 25 spam % 14.9% 5.9%
Top 50 spam % 15.8% 6.7%
Top 100 spam % 13.6% 7.0%
Top 1000 spam % 4.0% 18.2%

Figure 7.4 shows the per-user differences in Average Precision (AP) on the spam-extended
and spam-free data sets for both approaches. It can be observed from Figure 7.4(a) that the
increase in MAP for the tag overlap approach is due to the large improvement for a single
user. For all other users, performance remains the same or decreases slightly. This leads us
to believe that the increase in MAP is coincidental and not structural. In contrast, Figure

Chapter 7. Spam 143

7.4(b) shows a consistent, negative effect of spam on the AP scores of the majority of test
users.

-0.2

-0.1

 0

 0.1

 0.2

AP
 d

iff
er

en
ce

(a) Item-based CF with tag overlap

-0.2

-0.1

 0

 0.1

 0.2

AP
 d

iff
er

en
ce

(b) Profile-centric approach

Figure 7.4: User level differences in AP scores between the runs on the spam-extended
and spam-free data sets. Figure 7.4(a) shows the score differences for the item-based CF
approach with tag overlap similarity; Figure 7.4(b) shows the differences for the profile-
centric approach.

If we look at the actual spam presence in the rankings of the clean and spam-extended
data sets in Table 7.4, we can see some remarkable differences between the tag-based and
content-based runs. While the content-based run contains more spam items in its rankings
overall, we see that this spam mostly concentrated in the lower end of the rankings, after
the top 100 results. In contrast, for the tag overlap run, most of the spam content is present
in the top 100 of each user’s list of recommendations. This percentage is fairly constant at
around 15%, which means the spam items are evenly distributed over the top 100 items.
In 10% of the cases, even the first item recommended by the tag overlap approach is spam;
this never happens for the content-based approach.

The tag overlap approach is not harmed by spam in the data, while the content-based
approach is, even though the item rankings of the former are in fact polluted with more
spam in the top 100. This difference is surprising, since we could reasonably expect the
approach with the biggest proportion of spam in the ranking to perform worst, as well as
other approaches where the spam content is located at the top end of the rankings. The
fact that this does not happen shows that the presence of spam does not change the ranking
of the relevant items by the item-based filtering approach. In the content-based approach,
relevant items are actually ranked worse when spam is present, suggesting a precision-
decreasing effect. Using the same analysis as described in Subsection 6.4.1, we are able
to confirm this. For both spam-extended runs, recall is down as they retrieve less of the
relevant items. However, the items are ranked better by the spam-extended tag overlap
approach as we see a precision-enhancing effect of a 6.3% increase in MAP compared to the
run on the spam-free data set. Moreover, we also see a recall-decreasing effect of -9.7%.
For the content-based approach, we instead see a precision-related -29.9% decrease in MAP
score and a recall-related decrease of -21.1%.

Chapter 7. Spam 144

Let us attempt to find out what is happening to the rankings generated by the content-based
approach that causes this decrease in performance. Our content-based recommendation
algorithm is based on a standard language modeling approach to IR, where the user profile
representation corresponds to the query and the item representations correspond to the
documents. In language modeling, the goal is to estimate the likelihood of the query being
generated by a documents, and then ranking all documents by those estimated likelihoods.
We use the Jelinek-Mercer smoothing method in our experiments, which involves linear
interpolation between a document model and a collection model (Hiemstra, 1998). For
each query term—i.e., term in the user profile—we calculate the probability of the term
being generated from the document model θd according to the equation

p(t|θd) = λ · p(t|d) + (1−λ) · p(t), (7.4)

where p(t|d) represents the term probability according to the document model and p(t)
represents the term probability according to the background collection model. The weight-
ing parameter λ was set to 0.9 in our experiments. When we add large amounts of spam
to a data set as we did for BibBoo, the queries and the document models for a particular
query-document pair—or in our case user-item pair—do not change. What can and does
change, however, is the collection model and the associated term probabilities p(t). The
probability of a term given the collection model is calculated as the total number of occur-
rences of t in the collection

∑

d n(t, d) divided by the total number of terms in the collection
∑

d n(d), as in

p(t) =

∑

d n(t, d)
∑

d n(d)
, (7.5)

where n(t, d) is the number of occurrences of term t in document d and n(d) is the total
number of terms in document d. We see that the ranking of the relevant items decreases,
which could mean one of two things. One possibility is that p(t) decreases for the terms
also occurring in the user’s profile. This can happen when the spam items introduce more
terms into the collection that are not in the user profile. When this happens, the total
number of terms in the collection

∑

d n(d) grows faster than the number of occurrences
of a specific term in the collection

∑

d n(t, d). The other possible reason for the rankings
drop of relevant items is that other non-relevant, non-spam items are ranked higher and
repress the relevant items. This could happen when certain user profile terms that were not
matched against the relevant items in the spam-free data set suddenly occur much more due
to the spam content and become more important for ranking the other non-relevant items.
The probability p(t) for these terms could increase either through a decrease in collection
size—which is impossible here—or through an increase in the occurrence of term t in the
collection. In the latter case, the spam items contain many occurrences of these previously
‘unused’ terms and increase the importance of the background model in ranking the items.
We believe it is a combination of these two factors that causes the performance drop.

In contrast, the item-based filtering approach with tag overlap is not affected because more
items are added to the system. For this approach to be affected, the newly injected items

Chapter 7. Spam 145

also have to directly match the items of a specific user to influence the recommendations
for that user. Since the MAP score of the tag overlap approach is not affected, spammers
do not appear to directly target the system in this way. The item-based CF algorithm has
also been shown in the past to be fairly robust against spam (Lam and Riedl, 2004). The
end goal of spammers, however, is not per se to ruin the ranking: it is to manipulate it
in such a way that their own content can be found at the top of the results lists. The
tag overlap approach does not seem to be better at this than the content-based approach,
even though the previously added items are retrieved better by the former approach when
spam is present in the system. When all is said and done, the most important vote here is
cast by the users themselves, who do not appreciate the presence of spam in their list of
recommendations, even when it is alternated with relevant recommendations. We believe
this to be the best reason for social bookmarking systems to filter out spam content.

7.5 Chapter Conclusions and Answer to RQ 4

In this chapter we have attempted to determine what the influence of spam content is on
social bookmarking systems, corresponding to our fourth research question and its two
subquestions.

RQ 4 How big of a problem is spam for social bookmarking services?

RQ 4a Can we automatically detect spam content?

RQ 4b What influence does spam have on the recommendation performance?

We argued that spam is as much of a problem for social bookmarking as it is for other tasks
such as e-mail and search. To quantify the problem, we examined two of our collections,
CiteULike and BibSonomy in more detail, and found that these data sets contain large
amounts of spam, ranging from 30% to 93% of all users marked as spammers (RQ 4). We
then proposed SPAMORY, a k-NN approach to spam detection that builds representations
of the user and item metadata in a system, and uses the KL divergence as its similarity
metric. We implemented SPAMORY at two different levels of granularity: directly matching
user profiles and matching item profiles. We found that using all available metadata at
the user level provides the best performance, and that our spam detection approach works
well on both data sets (RQ 4a). Finally, we took a closer look at the influence of spam on
recommendation performance, and extended our BibSonomy bookmarks data set with all
spam content. We tested a CF and a content-based approach, and found that spam has a
negative effect on recommendation. The content-based approach was affected most by the
spam presence, but all result lists were unacceptably polluted with spam items, proving the
necessity of adequate spam detection techniques (RQ 4b).

m

C
H

A
P

T
E

R 8
DUPLICATES

Another growing pain that social bookmarking systems face, and the second we focus on,
is the presence of duplicate items in the system. With many items being bookmarked by
different users, the ideal situation would be that, for each new post, the system could recog-
nize if that resource has already been posted to the system. Although each post is personal
to a user and should be stored separately along with the personal tags and metadata for
that user-item combination, the common resource targeted in all those posts should only be
stored once in the system. While most services will attempt to match identical resources—
with varying degrees of sophistication—no matching system can be perfect. Compared to
spam, this is obviously less an issue of malicious intent, and more one of carelessness or
lack of awareness. However, their presence can still have consequences for the social book-
marking service. Users might not be able to find all related users based on the articles they
share if duplicates create a chasm between different user groups. Erroneously storing the
same resource multiple times could diminish the strength of the social bookmarking system
and deflate popularity counts, as well as increase storage and processing requirements. It
might also affect item recommendation: two versions of the same article might be recom-
mended in the same session, and perhaps it is not possible to locate all interesting articles
when article counts are diluted and fragmented. In this chapter, we focus on this problem:
how can we detect duplicates automatically and what effect do they have on recommenda-
tion? In other words, how important is it to have a good de-duplication policy in a social
bookmarking system? This leads us to our fifth research question.

RQ 5 How big a problem is the entry of duplicate content for social bookmark-
ing services?

The problem of duplicates exists, to varying degrees, in all three social bookmarking ser-
vices: CiteULike, BibSonomy, and Delicious. However, we will only examine it for CiteULike
in this chapter. Jäschke et al. (2007a) mention that BibSonomy already uses hashing at the
posting phase to make users attentive of the fact they might be adding a resource already
present in the system. The BibSonomy data set is therefore not very suited for our experi-
ments. While both Delicious and CiteULike could have been used for our investigations in

147

Chapter 8. Duplicates 148

this chapter, we chose to focus only on CiteULike because of its smaller size, allowing for
the manual annotation of a reasonable portion of the data. Our fifth research question gives
rise to two, more specific subquestions.

RQ 5a Can we construct an algorithm for automatic duplicate detection?

RQ 5b What influence do duplicates have on recommendation performance?

In the next section we describe how duplicates are currently handled in CiteULike, followed
by Section 8.2 where we discuss the most appropriate related work in de-duplication. In
Section 8.3, we describe our approach for detecting duplicates in the CiteULike collection,
from creating an appropriate test set to doing the actual de-duplication and its results (RQ
5 and RQ 5a). Section 8.4 then describes our investigations into the influence duplicates
can have on recommendation (RQ 5b).

8.1 Duplicates in CiteULike

CiteULike users have many different options for adding articles to their own CiteULike pro-
file. The easiest option is by simply clicking on the ‘Copy’ link when viewing the dedicated
page of an interesting article. However, the copy option is not the only method for adding
articles to a personal profile, and many users do not search CiteULike to see if the article
they want to add is already present. In the 30 days leading up to the Christmas holidays
of 2008, CiteULike reported to have received 116,477 posts, of which only 6,189 posts (or
5.3%) were copies made directly from other users’ libraries (Fenner, 2009). Judging by the
many import-related tags in the CiteULike data set1, a popular way of adding articles to
one’s library is by importing an entire BibTeX or EndNote library at once. If these entries
do not already contain universal document identifiers like DOI numbers, then no steps are
taken by CiteULike to match these imports to existing items in the database (Chris Hall,
Citeulike, personal communication, May 2008).

We expect that, because of these two factors, a sizable part of the articles posted to CiteULike
are duplicates of items already in the database. Since popular articles are added more often,
there is a bigger chance that something can go wrong when users enter the item metadata
into the system. It is reasonable to assume that there is a fixed probability that spelling
errors or missing DOIs cause a duplicate article to be spawned. The number of duplicates for
a given article is therefore likely to be commensurate with the popularity of the first instance
of that article posted to CiteULike. We examine in Section 8.3 whether this relationship is
indeed present.

In terms of popularity of the duplicate items themselves, one would expect that the duplicate
versions of an article are rare themselves. Because the percentage of articles that are copied
directly to a user’s profile via the ‘Copy’ link is relatively small, duplicate versions are not

1We manually identified 57 different import-related tags, such as bibtex-import or endnote_import. These
tags comprise up to 3.8% of all assigned tags in the November 2, 2007 data set. Most people add ‘real’ tags
themselves after importing, so the number of items added by batch import is likely to be even higher.

Chapter 8. Duplicates 149

likely to propagate this way. Nevertheless, this is not always the case: the original version of
the article “Referral Web: Combining Social Networks and Collaborative Filtering” (Kautz
et al., 1997) has been added by 40 users, whereas an exact duplicate record of that paper
that was added later to CiteULike has been added by 31 other users. In this case, the
duplicate version is nearly as popular as the original version of the same paper. If we assume
that this article spawned other, less frequent duplicate versions as well, this means that the
article is twice as popular on CiteULike than one would expect from simply observing the
frequency of the original version of the article. In general, however, we expect that all
duplicate versions on CiteULike together show a Zipfian frequency distribution with a long
tail of unpopular duplicate versions and a handful of duplicates that have become relatively
popular.

8.2 Related Work

Any recommender, retrieval, or information access system that relies on user-generated
content or metadata is susceptible to the problem of duplicate or near-duplicate content. In
dealing with such duplicate content, system designers have a choice of when to take action:
at the moment duplicate content is introduced into the system, at the end when the results
of some requested action are presented to the user, or somewhere in between. Deferring
de-duplication to the end is a lazy approach, whereas the other two options can be classified
as eager approaches to de-duplication.

Lazy Deduplication The lazy approach to de-duplication is most common in the litera-
ture on recommender systems. Here, the problem of removing duplicate content is deferred
to after the recommendations have been generated, either by grouping duplicate items to-
gether or by removing them from the final list of recommendations presented to the user.
For instance, search engines for research papers such as Google Scholar2 attempt to group
all duplicate versions of the same reference together in their search results. Online stores
such as Amazon3 form another example as they try to group together the different formats
of the same item— such as Blu-ray and DVD versions of the same movie—in their recom-
mendation lists. In the majority of the literature on recommender systems, de-duplication
is mentioned merely in passing. Most papers mention having a de-duplication module that
performs post-processing on the final recommendation lists, but do not go into any more
detail about this (Glance et al., 2001; Haase et al., 2004; Horozov et al., 2006). The way
the de-duplication problem is described in these papers suggests that identifying duplicate
content is often dealt with as an afterthought in the design of such complex systems.

Eager Deduplication In contrast, taking an eager approach means the de-duplication pro-
cess takes place before the actual recommendation, retrieval, or aggregation operations are
executed. Eager de-duplication has several advantages over its lazy counterpart, such as
obtaining a cleaner and more compact data set, reducing storage and processing require-
ments. In the eager scenario each system module can operate on the same ‘pure’ data set,

2http://scholar.google.com/
3http://www.amazon.com/

http://scholar.google.com/
http://www.amazon.com/

Chapter 8. Duplicates 150

whereas the lazy situation would require separate de-duplication post-processing steps to
be run on their separate outputs. Arguably the optimal stage to detect duplicates is when
they are entered into the system if there is a way to involve the user in this. Presenting
the user with a list of similar content already into the system, could prevent the user from
polluting the database with identical information. For practical reasons, however, it might
not always be possible to involve the user in this process—users might choose to upload a
large batch of their publications that they are not willing to de-duplicate in a single pass.
Identifying all duplicates in a (periodic) batch process after data entry but before recom-
mendation will often be the most practical option. As we crawled our data sets from the
Web, we cannot elicit the help of users directly, which leads us to resort to a batch approach
to de-duplication as well.

We know of no related work on eager de-duplication in the field of recommender systems.
In the past 50 years, however, many different research fields have investigated the problem
of (near-)duplicate content under various monikers, including record linkage, data integra-
tion, database hardening, name matching, and entity resolution (Elmagarmid et al., 2007).

Deduplication on the Web Finding near-duplicate content among Web pages has been an
active research topic in the IR community for more than a decade. It is aimed at reducing
the index sizes of Web search engines, and prevalent approaches operate on the full text
of billions of Web pages. We refer the reader to Henzinger (2006) for a comprehensive
comparison and overview of the subject. The techniques described in Henzinger (2006) are
optimized for finding (near-)duplicates of Web pages using the full text. In our approach
we focus on de-duplication using techniques from the record linkage field, as these are
optimized on working with metadata content from database fields4.

Deduplication in Databases In our CiteULike data set we wish to identify duplicate ref-
erences, i.e., those items that refer to the same reference. While these duplicate references
may match exactly on certain metadata fields, misspellings or incorrect entries can intro-
duce difficulties in identifying duplicates. This is most closely related to the field of record
linkage, which was first explored in the 1950s and 1960s (Elmagarmid et al., 2007). One
of the earliest and most straightforward approaches to record linkage is a rule-based ap-
proach where reasonable rules are manually developed to match the data in the different
fields and subsequently refined when exceptions to the rules are found (Elmagarmid et al.,
2007). Such approaches typically achieve high accuracy but at a cost of much manual ef-
fort and continuous updating of the rule base. Fellegi and Sunter (1969) were the first to
pioneer probabilistic approaches to record linkage. Here, pre-labeled data sets are used to
automatically determine the importance weights that should be assigned to the different
metadata fields in the matching process. Different string similarity metrics are then used
to determine the similarity between matching metadata fields. By setting thresholds on the
combined matching score, pairs of records are then predicted to be duplicates or not (Fellegi
and Sunter, 1969).

4This decision is supported by preliminary experiments using shingling and the SimHash algorithm to de-
duplicate CiteULike references (Henzinger, 2006). These experiments showed inferior performance compared
to state-of-the-art record linkage approaches.

Chapter 8. Duplicates 151

In recent years, an increasing body of work focuses on the application of machine learning
algorithms to automatically learn the field weights and similarity thresholds for accurate
matching functions. State-of-the-art approaches include Parag and Domingos (2004) and
Bilenko et al. (2003). The latter compared a variety of character-based and token-based
string similarity metrics such as the Levenshtein distance and tf·idf weighting, and found
that the choice of optimal metrics is largely dependent on the data set used. They also
showed that learning accurate matching functions using Support Vector Machines can yield
significant improvements over the traditional probabilistic approach. We follow the work of
Bilenko et al. in our de-duplication approach and use machine learning to learn the accurate
matching function for combining the different metadata field similarities.

The effect of duplicate content on recommender system performance has not been the topic
of much study, but some studies have been carried out in the IR community. Bernstein
and Zobel (2005) explored techniques similar to those used by Henzinger (2006) on the
runs submitted to the TREC Novelty track and found that returning duplicate documents
had a significant effect on search experience, with up to 17% of duplicates in the returned
result lists. In Section 8.4 we perform the same kind of analysis for social bookmarking
recommendation.

8.3 Duplicate Detection

As mentioned before, unless new posts contain a universal document identifier like a DOI
number, no steps are taken by CiteULike to match these articles to existing items in the
database. This can result in a large number of duplicates on CiteULike. A good example
is the article “Collective Dynamics of Small-World Networks” (Watts and Strogatz, 1998).
The original version has been added by 43 different users, but it has at least 28 duplicates,
added by 29 different users. This means that over 40% of all users who added the article
might actually be found by following links in the folksonomy from the original article to
other users.

In this section we describe our two-step duplicate detection strategy for CiteULike. The first
step in this strategy was obtaining training material to get an estimate of how widespread
duplicates are on CiteULike, and to train our duplicate classifier on. We describe collection
of this training material in Subsection 8.3.1. In Subsection 8.3.2 we describe the second
step: how to construct the duplicate classifier. In Subsection 8.3.3 we present the experi-
mental results of our classifier.

8.3.1 Creating a Training Set

The first step in analyzing the effect of duplicates on the recommendation process is con-
structing a gold standard training set to evaluate our de-duplication methods against. This
training set should contain both examples of pairs of duplicate items on CiteULike and of
pairs of unique, different items, because any multi-class discriminative machine learning al-
gorithm presented with only positive examples can and will only learn to output a positive

Chapter 8. Duplicates 152

prediction every time. Furthermore, any realistic collection of training material should also
contain an appropriate ratio of duplicate pairs and different pairs, as social bookmarking
systems in general are more likely to contain only a small percentage of duplicate content.
Our collection process starts by (1) identifying likely pairs of duplicates and an appropriate
number of pairs of distinct items, followed by (2) a manual annotation phase where all
considered pairs were judged as being duplicate pairs or not.

We select our training set pairs as follows. First, we order all the items in our original
CiteULike data set5 on popularity counts and divide them into 10 logarithmic bins based
on these frequency counts. From each bin we randomly pick 5 seed items—less if the bin
contained less than 5 items—resulting in a total of 34 seed items. For each of these ‘focus’
items we extract all bigrams from their tokenized6 titles that do not contain a stop word7.
For examples, for an item with the title “Referral Web: Combining Social Networks and
Collaborative Filtering” (Kautz et al., 1997) this results in the following 5 bigrams: referral
web, web combining, combining social, social networks, and collaborative filtering.
From each seed item’s bigrams we randomly select two of them, which are then used as
queries on all item titles in the CiteULike data set. This means that for each seed item
two queries are constructed and matched against all 500,000+ titles in the CiteULike data
set. Because duplicate items can often be the result of spelling errors, this matches a good
number of duplicate items with different IDs that effectively represented the same article.
In practice, these bigrams also match a wide variety of titles more often than not, resulting
in a large number of pairs of distinct items. All items whose title matches one of these two
bigram queries are then each paired up with the respective seed item(s) they originated
from. This selection process found 2,683 matching items and a total of 2,777 pairs of seed
items and matched items.

In the second phase of our collection process, we manually annotated these 2,777 pairs.
Appendix D contains more information about the annotation process. Of the 2,777 an-
notated pairs, 189 were found to be duplicates of one of the 34 seed items, and 2,588
were not, giving us a training set with 6.8% duplicates. It is very likely that because of
our bigram matching method—a straightforward form of de-duplication in itself—we have
overestimated this proportion of duplicates in our training set. The actual ratio of positive
to negative examples in the complete CiteULike data set is expected to be much lower. How-
ever, we do not believe that overestimating this proportion will hurt our detection method,
as the use of sampling methods to artificially constrain the ratio of positive to negative
examples is common in machine learning and is not dependent on the actual ratio. In ad-
dition, our bigram method will result in higher recall at the expense of precision. However,
since we use human annotators to interactively check our training set for duplicates and
non-duplicates afterwards, precision can be allowed to take a back seat to recall in our
collection of the training set. Furthermore, the advantage of using the bigram queries is
that the non-duplicate pairs are more likely to be more difficult to predict properly for our
machine learning algorithm. If we were to select items randomly to pair up with the seed

5For this selection process we used the original, unfiltered CiteULike data set as described in Table 3.1
instead of the data set used in our experiments in Chapters 4–6 and described in Table 3.2.

6Regardless of the algorithm used, normalization of the data is very important and can result in higher
accuracy.

7We filtered stop words using the SMART stop word list.

Chapter 8. Duplicates 153

items, term overlap can be expected to be much lower than in our present case, which could
overestimate the performance of the classifier.

For 8 of the 34 seed items we could not find any duplicate items. This does not mean that
these could not have duplicates, merely that our bigram matching method did not find any.
For the remaining 26 seed items the number of duplicates varies from 1 to 30, with 5 of of
the 26 items having more than 25 duplicate versions on CiteULike. Figure 8.1 shows the
distribution of duplicate counts over the seed items.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 5 10 15 20 25

du
pl

ica
te

 c
ou

nt

seed items

Figure 8.1: Distribution of the duplicates over the different seed items in our training set.

8.3.2 Constructing a Duplicate Item Classifier

The second step of our duplicate detection strategy for CiteULike involves constructing a
duplicate item classifier. Our approach to duplicate detection is inspired by Bilenko et al.
(2003) and involves a pairwise prediction task: we represent a pair of items by different
features, where each feature represents some type of similarity measure calculated on the
item pair. These instances are then fed to a machine learning algorithm that learns the best
combination of feature weights, and predicts a binary label: duplicate pair or distinct pair
of items.

Feature Representation What features do we use for duplicate classification? Scientific
articles can be annotated with many different metadata fields in CiteULike, but the majority
of these fields are only sparsely filled. Table 5.1 lists how much metadata we have available
for each field. The following six fields are populated densely enough to be of use in match-
ing all of the items in the CiteULike data set: AUTHOR, ENTRYTYPE, TAGS, TITLE, URL, YEAR.
Inspection of the ENTRYTYPE metadata field, denoting the BibTeX entry type, showed it is
not used consistently enough to be useful. As electronic versions of papers can be found in
many different location on the Web, the URL field will not be reliable enough either. Finally,
since tags represent a personal vocabulary, we do not use them as a source of metadata
comparison either. This leaves us with the AUTHOR, TITLE, and YEAR fields to calculate the

Chapter 8. Duplicates 154

similarity features. Bilenko et al. (2003) compared a variety of character-based and token-
based string similarity metrics such as the Levenshtein distance and tf·idf weighting. We
follow their approach to feature construction and calculate six different features for each
feature pair: four for the TITLE field, and one each for the AUTHOR and YEAR fields. Table 8.1
describes these six features.

Table 8.1: Similarity features used in duplicate detection.

Feature Field Description

F1 TITLE Cosine similarity on length-normalized, unigram term vectors.
F2 TITLE Cosine similarity on length-normalized, bigram term vectors.
F3 TITLE Length of the longest common substring divided by the length of the

longest string.
F4 TITLE Normalized Levenshtein distance on the titles.
F5 AUTHOR Unigram term overlap of tokenized author string.
F6 YEAR Binary match on publication year.

All feature values are mapped to the [0,1] range. Note that the first three title-based fea-
tures are arranged in order of increasing strictness. Feature F1 calculates the cosine sim-
ilarity on unigram term vectors of the two item titles, while feature F2 uses bigram term
vectors. A high score on F2 automatically means a high score on F1. A high value for fea-
ture F3 implies high values for F1 and F2, and additionally requires that the unigrams and
bigrams occurring in the longest common substring are also in the right order. The nor-
malized Levenshtein distance can be calculated in different ways; we calculate it according
to Navarro (2001) as 1 − Levenshtein(title1,title2)

max_length(title1,title2)
. From our experiences with the training set,

sometimes a mistake separating two duplicates can be as simple as entering the year 2003
instead of 2004. Generally speaking, however, relaxing the binary matching on years is
likely to result in too many false positives. Figure 8.2 shows some examples of training set
instances represented using our six features.

 99 1075248 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1
 99 1075282 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1
 99 1091096 0.2981 0.0000 0.1111 0.4677 0.0000 1.0000 0
 99999 1791032 0.3333 0.2582 0.1250 0.1695 0.0000 1.0000 0
1272533 1412129 0.2390 0.1508 0.1667 0.2432 0.0000 1.0000 0
1272533 1416466 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1
1272533 1821589 1.0000 1.0000 1.0000 1.0000 0.0000 1.0000 1

ITEM ID 1
CLASS 
LABEL

ITEM ID 2 FEATURE 1 FEATURE 2 FEATURE 3 FEATURE 4 FEATURE 5 FEATURE 6

PAIRED ITEMS DUPLICATES?

Figure 8.2: Example instances from our duplicate detection training set. The first instance
shows a perfect match on all features, which is reflected in the ’1’ value for the class label,
whereas the fourth instance matches on publication year, but not well on the other features.
The seventh instance is an example of two paired items that represent the same content,
but where the author field was not filled in for one of the users.

Chapter 8. Duplicates 155

Experimental Setup The next step in constructing a duplicate item classifier is training it
on the training set we constructed in the previous section. For each of the 2,777 pairs in
the training set, we create an instance with the six similarity features calculated on the item
pair and the class label ‘1’ or ‘0’, denoting a duplicate or distinct pair of items. When we
train a machine learning algorithm on this data set, it attempts to learn the optimal set of
combination weights to detect duplicate pairs. Like Bilenko et al. (2003), we use Support
Vector Machines (SVMs) as our machine learning algorithm. SVM is a supervised machine
learning algorithm that attempt to find the maximum margin hyperplane separating the
two classes of pairs. We refer to Burges (1998) for more detailed information about the
algorithm. We used the publicly available SVMlight implementation for our experiments8.
Similar to our experimental setup for our recommendation experiments, we divided our
2,777 pair data set into a training and a test set, and randomly assigned 15% of the pairs to a
test set and the remaining 85% to a training set. We further subdivided our training set into
10 folds for 10-fold cross-validation. We optimized the parameters of SVMlight using our 10-
fold cross-validation setup with Paramsearch, which is a publicly available implementation9

of the wrapped progressive sampling approach to parameter optimization proposed by Van
den Bosch (2004). Paramsearch optimizes the four SVMlight parameters listed in Table 8.2.

Table 8.2: List of parameters optimized for the SVM classifier by Paramsearch.

Parameter Description

-t Type of kernel function (linear, polynomial, radial basis function, or sigmoid).
-g Gamma parameter for the radial basis kernel.
-t Trade-off between training error and margin.
-j Cost-factor by which training errors on positive examples outweigh errors on

negative examples.

In addition to these parameters, we also experiment with different ratios of positive and neg-
ative examples. Data sets that are heavily skewed towards a single class can be problematic
to learn for a machine learning algorithm when evaluated on, for instance, accuracy. The
algorithm might simply learn a classifier that outputs the majority class label all the time,
if that results in a high accuracy score. Even when evaluating using a proper evaluation
metric such AUC instead of accuracy, a heavily skewed data set still might not result in the
best possible classifier. Another solution to this problem is adjusting the ratio of positive to
negative instances in the training set. By downsampling the majority class, we can ‘force’
the classifier to base its decision purely on the feature value and not just on the evaluation
metric (Japkowicz and Stephen, 2002). This has been shown to work well on other tasks
and data sets10. We therefore construct two alternative data sets by randomly sampling the
positive and negative examples in a 1:1 ratio and a 1:2 ratio, where the data sets contain
one respectively two negative instances—i.e., distinct pairs—for each positive one—i.e., a
duplicate pair. We refer to these data sets as POSNEG 1-1 and POSNEG 1-2. Such instance
sampling reduces the size of the training set. To show that the reduction does not simply
make the classification problem easier, we also constructed a data set of the same size as

8Available at http://svmlight.joachims.org/
9Available at http://ilk.uvt.nl/paramsearch/

10Certain machine learning algorithms are more susceptible to this than others, but SVMs have also been
shown to be affected by this problem (Japkowicz and Stephen, 2002).

http://svmlight.joachims.org/
http://ilk.uvt.nl/paramsearch/

Chapter 8. Duplicates 156

POSNEG 1-1 but with randomly selected instance from the entire data set ALLINSTANCES. Per-
formance on this new data set, SIZE 1-1, will show if the downsampling simply made the
problem easier by reducing the size, or if the sampling is a successful technique. If the scores
on POSNEG 1-1 are significantly higher than on SIZE 1-1, then the downsampling improved
performance because of a more optimal instance ratio, and not because of the reduced data
set size. We do the same for the POSNEG 1-2 and create a matching SIZE 1-2 data set. For
each of these extra four data sets we also partitioned the data as described above and ran
Paramsearch to find the optimal parameters settings. The optimal settings were then used
to train the model on all of the training data and used to classify the test data. The results
of these experiments are listed in the next section.

Duplicate Identification in CiteULike After training a duplicate classifier we can use it to
detect duplicates in our entire CiteULike data set. We use the unfiltered data set containing
585,351 items, so that we can gather complete frequency information about all items, and
not just those that occur at least twice. Ideally, we would want to determine for each pair of
items in our item set LALL whether or not they are duplicates. To do this we represent each
item pair in the same format as we did with our training set, as described in Table 8.1 and
Figure 8.2, but without the class label which we are trying to predict. Unfortunately, with a
data set size |LALL| of 585,351 items considering all possible pairwise comparisons requires
examining 1

2
LALL(LALL− 1) item pairs, which amounts to 171,317,603,925 comparisons.

This is clearly an undesirable situation, but also a common one in the field of record linkage.
While the total number of comparisons might be impractical to carry out, most record pairs
are clearly non-duplicates, so they do not need to be considered for matching. This can be
achieved through blocking by dividing the database records in blocks, where only the records
within the same block are compared to each other (Bilenko et al., 2003). An example of a
blocking method is the sorted neighborhood method, which sorts the records over the most
important discriminating attribute of the data, such as the TITLE field in our case. After the
sort, the comparison of records is then restricted to a small neighborhood within the sorted
list (Hernández and Stolfo, 1995). However, we believe that the TITLE field is also the most
vulnerable to spelling errors, so we suspect sorted neighborhood blocking would result in
too many missed duplicate pairs. We therefore apply our own blocking method: popularity
blocking, based on the popularity counts of the items. We identify all duplicates in three
different steps, as visualized in Figure 8.3.

We can reasonably assume that for an item with duplicates, the original item will often be
the most popular compared to its clones. We therefore divide our items into two popularity
groups: the set of popular or high range LHIGH items that have been added to 10 or more user
profiles, and the less popular, low range set of items LLOW that contains all the remaining
items. This results in 680 and 584,671 items in the high and low range sets respectively. It
is reasonable to assume that the original item of a set of duplicates usually falls into the high
range, while most of its duplicates fall into the low popularity range. In the first step of our
deduplication process we do a pairwise comparison of each item in LHIGH with each item in
LLOW , resulting in 397,576.280 comparisons. Then, in the second step, we compare all the
high popularity items with each other, resulting in 230,860 comparisons for our data set. We
compare the high range items with each other on the off-chance that one of the duplicates
is very popular as well. Finally, we select all of the duplicate items found in the first two

Chapter 8. Duplicates 157

(1) between high and!

low range IDs!

high range!

items!

low range!

items!

(2) within high range IDs! (3) between duplicate IDs
identified in step (1)!

Figure 8.3: Visualization of our popularity blocking scheme for duplicate identification.
Items, represented by the small circles, are divided into two groups based on popularity.
Solid black circles represent items for which a duplicate has been identified, with the dotted
line connecting a pair of duplicate items.

steps and classify all pairs within this group. We take this third step to detect the duplicates
we missed by not comparing the low popularity items with each other, resulting in another
19,279,888 comparisons. In total, we performed 417,087,028 comparisons, which is 99.7%
of the total number of possible comparisons.

8.3.3 Results and Analysis

Evaluating the Duplicate Item Classifier Table 8.3 lists the results of our different du-
plicate classification experiments on the training set. What we see is that the POSNEG 1-1
data set, where positive and negative instances were sampled in an equal ratio, achieves the
best classification performance, at an F-score of 0.9804 and an AUC score of 0.9795. For
F-score, the POSNEG 1-1 data set is significantly better than all other variations at α = 0.05.
The POSNEG 1-2 variation, however, does not perform significantly better than the using all
instances in the training set. Both POSNEG variants perform significantly better as measured
by F-score than their corresponding SIZE runs, which shows that the improved performance
is not just due to a reduced size of the training set. When we measure classification perfor-
mance by AUC, none of the differences are statistically significant but we still see the same
pattern occurring as we do for F-score.

Classifying Duplicates on CiteULike Based on the results in Table 8.3, we select the
POSNEG 1-1 classifier for classifying the duplicate items in the entire CiteULike data set.
The optimized parameter settings for this SVM-based classifier include using a radial basis
function kernel (-t) with the γ parameter (-g) set to 0.128. The cost factor (-j) is set to the
default value of 1.0, and the training error-margin trade-off (-c) is set to 5. Table 8.4 shows
the number of duplicate pairs identified in each of the three steps shown in Figure 8.3.

Chapter 8. Duplicates 158

Table 8.3: Results of duplicate classification on the training set, evaluated on F-score and
AUC. Best scores are printed in bold.

Data set F-score AUC

ALLINSTANCES 0.9274 0.9532
POSNEG 1-1 0.9804 0.9795
POSNEG 1-2 0.9393 0.9531
SIZE 1-1 0.5537 0.9164
SIZE 1-2 0.5359 0.9195

Table 8.4: Results of deduplicating the CiteULike data set.

Step Duplicate pairs Total pairs % of pairs classified as duplicates

Step 1 30,421 397,576.280 0.0077%
Step 2 752 230,860 0.3257%
Step 3 172,814 19,279,888 0.8963%
Total 19,374 417,087,028 0.0046%

Certain pairs examined in step (3) were already compared in steps (1) and (2); filtering
out these identical pairs left us with a total of 19,374 pairs of duplicate items, which is why
the total duplicate count is lower than the sum of the duplicates uncovered in the three
individual steps. Overall, of the 400+ million pairs we compared, a little under 0.005%
were classified as duplicates. This shows that duplicate identification is like trying to find
a needle in a haystack. The largest proportion of duplicates were detected in step 3, which
is to be expected: this set already contains the duplicates detected in the first two steps,
and additionally links unpopular duplicates of the same original, popular items. The final
duplicate percentage is several orders of magnitude smaller than the the percentage in our
training set. While we already reported that number to be an overestimate, the actual
percentage of duplicates is still lower than we expected. Figure 8.4 shows three examples
of basic graph patterns of how these 19,374 duplicate pairs tend to be connected to each
other.

A B

(a)

E

C

D

(b)

H

G

F

(c)

Figure 8.4: Example duplicate graph patterns

Pattern 8.4(a) is the standard pattern, where item B was classified as a duplicate of item
A. For each pair we wish to replace the newest item by the oldest item, i.e., we consider
the item that was added first to CiteULike to be the original item. The arrow pointing from
item B to item A denotes that item A is the oldest known version of the item, and that all
occurrences of item B should therefore be replaced by item A. Pattern 8.4(b) occurs when

Chapter 8. Duplicates 159

multiple items are all classified as duplicates of the same item. In this case, items D and E
are both duplicates of original item C, and should both be replaced by item C in the data
set. Both patterns do not present any problems and are straightforward to apply. Pattern
8.4(c), however, represents a possible dilemma: item H is identified as the duplicate of two
different items. One option is to use the pair with the oldest original item, i.e., replace item
H by item F. It is more likely, however, that our classifier failed to identify a link between
items F and G, because not all possible item pairs were examined. In this case, we replace
this pattern by links to the oldest item F from all the other items in the pattern—items G and
H. After this re-alignment, items G and H are both replaced by item F. We only performed
this alignment step on this third pattern type once for each pattern. Errors made by our
duplicate classifier could result in introducing links between items that are not duplicates
and could results in chaining together too many original, yet different items if we decided to
iterate this alignment step until no more changes are made. After this step, 9,557 duplicate
pairs were left for deduplicating our data set.

Let us take a closer look at these duplicates we uncovered. Figure 8.5(a) plots the popularity
of the duplicates that were identified in the CiteULike data set, and shows it resembles a
Zipfian distribution. It shows that the mistake of creating a duplicate article on CiteULike
is often propagated , as many duplicates are added multiple times. One specific duplicates
was added over 80 times.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

Po
pu

la
rii

ty

Duplicate items

(a)

 1

 10

 100

 1000

 1 10 100

Po
pu

la
rii

ty

No. of duplicates

(b)

Figure 8.5: Visualizing the identified duplicates. Figure 8.5(a) plots the popularity of the
duplicates that were identified in the CiteULike data set, whereas Figure 8.5(b) plots the
popularity of all original, first versions of an item against the number of duplicates that
were detected for them.

Figure 8.5(b) plots the popularity of all original, first versions of an item against the number
of duplicates that were detected for these originals, and shows no apparent relation between
these two properties. It shows that, contrary to what we expected in Section 8.1, popular
items do not automatically beget more duplicates, as the number of duplicates for a given
article is not commensurate with the popularity of the first added version of that article.
Perhaps we were wrong in assuming that there is a fixed probability that spelling errors or
missing DOIs cause a duplicate article to be spawned.

Chapter 8. Duplicates 160

8.4 The Influence of Duplicates on Recommendation

In the previous section, we described an approach to detecting duplicate items in a social
bookmarking system. Just like spam, duplicate content can be a nuisance to users, dupli-
cate items can pollute the search results and prevent users from reaching all related content
when browsing the folksonomy. In addition, as with spam content, storing duplicate items
also wastes computing power and storage capacity that could be put to better use. Detect-
ing and removing duplicate content is therefore another vital component of a mature social
bookmarking service. We believe proper deduplication can be equally beneficial to recom-
mendation. User satisfaction is not served by multiple versions of the same item showing up
in the lists of recommended items, and a leaner version of the bookmarks database will also
cut down on computation time. The aim of this section is analogous to that of Section 7.4
in the previous chapter: in a small case study on one of our data sets we wish to examine
how much recommendation effectiveness is weakened by the presence of duplicate content.
We know of no other related work on this problem, and an initial investigation of this issue
will therefore be our contribution here.

8.4.1 Experimental Setup

We test the influence of duplicate content on recommendation using our CiteULike collec-
tion, and we described in the previous section how we detected the pairs of duplicate items
in this collection. After the duplicates have been identified they need to be filtered out, and
this can be done at two different stages: (1) on the original input data set (eager dedupli-
cation), and (2) by removing the duplicate items from list of generated recommendations
(lazy deduplication). We deduplicate the original data set by replacing all newer items of
each duplicate pair by their original item until there are no more items left to replace. This
typically takes 5 to 7 iterations.

 1

 10

 100

 1000

 1 10 100 1000 10000 100000

Po
pu

la
rii

ty

Items (before deduplication)

 1

 10

 100

 1000

 1 10 100 1000 10000 100000

Po
pu

la
rii

ty

Items (after deduplication)

Figure 8.6: Popularity of the CiteULike items before (left) and after deduplication (right).

Figure 8.6 shows the popularity of all items in the CiteULike data set before and after
deduplication. Plotting the two quantities on a log-log scale shows that both plots resemble
a Zipfian distribution, with the curve before deduplication being slightly flatter at the top.
Deduplication apparently removes this as the graph on the right shows a stronger Zipfian
distribution.

Chapter 8. Duplicates 161

To make for a fair comparison, we used our filtered version of the CiteULike data set as
described in Subsection 3.4.1, and applied our deduplication procedure on this data set.
This means we stay as close as possible to retaining users with 20 items or more, and items
occurring in at least 2 user profiles. Using a data set that does not filter out the unique items
could see a greater reduction in items when deduplicating, but such a filtering threshold
would lead to other problems, such as those discussed in Subsection 3.4.1. In addition, we
also deduplicated the relevance judgments for this deduplicated data set. Table 8.5 offers a
basic description of the new, deduplicated CiteULike data set compared to the original one.

Table 8.5: Basic statistics of our deduplicated CiteULike data set compared to the original
version.

Original data set Deduplicated data set

users 1,322 1,322
items 38,419 37,339
tags 28,312 28,196
posts 84,637 83,439
avg # items per user 64.0 63.1
avg # users per item 2.2 2.2
avg # tags per user 57.3 57.0
avg # users per tag 2.7 2.7
avg # tags per item 5.3 5.4
avg # items per tag 7.3 7.1
sparsity 99.8334 99.9236

If we had a perfect deduplication algorithm, we would see a decrease in item count as
duplicate items are rolled back into their earliest, original entries. The number of posts
by a user would stay the same here; only the item identifier would be altered. We can
assume that very few users would make the mistake of adding duplicate versions of the
same resource to their own profile, so the total number of posts in the data set would
stay almost the same11. Overall sparsity of the data set would decrease however. As we
see in Table 8.5, this is not the case. This indicates that our deduplication algorithm is
too aggressive in merging duplicate pairs: too many pairs of items within user profiles are
misclassified as duplicates and replaced by a single post. We will discuss the ramifications
of this later on in this section, as well as possible solutions.

Although it would be preferable to deduplicate the entire data set to reduce storage and
processing requirements, it is also possible to perform deduplication at another stage in the
recommendation process. Similar to what Bernstein and Zobel (2005) do for document
search, we can also leave the duplicates in the data set and instead deduplicate the output
list of recommendations. This is the second deduplication method we investigate.

Which algorithms do we use to test to determine the influence of duplicates? As in the pre-
vious chapter, we select the best-performing approaches from chapters 4 and 5. The best-
performing folksonomic recommendation algorithm was the standard item-based CF algo-
rithm with the I-BIN-IDF-SIM similarity metric, i.e., usage-based overlap using idf-weighting.

11This phenomenon does occur, however, and the posting count would therefore decrease slightly even if we
used a perfect deduplication algorithm.

Chapter 8. Duplicates 162

We optimize the neighborhood size for the spam extended data sets using our 10-fold cross-
validation setup. We select profile-centric content-based filtering as the best metadata-
approach and use all intrinsic and extrinsic metadata fields for our user and item repre-
sentations. Using the deduplicated version of our data set, we consider all users and items
for calculating the similarities. We evaluate on the same users with the same test items as
we did in our previous recommendation experiments on the CiteULike data set.

What do we expect from these two types of algorithms? We expect a metadata-based ap-
proach to suffer from the presence of duplicates, since retrieving any item based on the
user’s profile would also mean retrieving all of the duplicates with near-identical metadata.
The presence of duplicates could also be detrimental to performance of an item-based CF
approach. If there is an item with duplicates that are relatively popular themselves, these
duplicates and the original item are likely to be divided over the users interested in the
original item. This means that there is no guarantee that all the best nearest neighboring
items are located for each item, resulting in suboptimal performance. However, duplicate
versions of the same item are not likely to show up in the same list of recommendations,
because usually they are not as popular as the original versions. This means there is not
enough evidence to recommend them over other items. We expect that a metadata-based
approach is therefore more vulnerable to spam.

8.4.2 Results and Analysis

Table 8.6 shows the results of our two selected algorithms on the CiteULike data set with
deduplication on the original data set and deduplication of the list of recommendations.
We find only small changes in performance of our two deduplication methods compared
to the MAP scores on the original CiteULike data set. For the item-based CF approach,
the MAP score drops slightly from 0.0887 to 0.0882 and 0.0886; for the profile-centric
approach, deduplicating the entire data set causes a slight drop from 0.0987 to 0.0985,
whereas deduplicating the result list shows a small increase in MAP score to 0.1011. None
of the changes are statistically significant.

Table 8.6: The influence of duplicate items on recommendation performance on our orig-
inal CiteULike data set. Deduplication was at two different stages: on the input data set
and on the result list. Reported are MAP scores and best results are printed in bold.

Item-based CF Profile-centric

Original CiteULike data set 0.0887 0.0987
Deduplication on data set 0.0882 0.0985
Deduplication on result list 0.0886 0.1011

Figure 8.7 shows the same picture in the per-user differences in Average Precision (AP) for
the four different deduplication runs. For all but the profile-centric method with deduplica-
tion of the result lists, we find that deduplication provides benefits for some users, but that
misclassifications introduce errors for others. For the profile-centric method with dedupli-
cation of the result lists we see a slightly more positive effect, although the differences are
too small to be significant or useful.

Chapter 8. Duplicates 163

-0.2

-0.1

 0

 0.1

 0.2

AP
 d

iff
er

en
ce

Item-based CF, data set deduplication

-0.2

-0.1

 0

 0.1

 0.2

AP
 d

iff
er

en
ce

Profile-centric, data set deduplication

-0.2

-0.1

 0

 0.1

 0.2

AP
 d

iff
er

en
ce

Item-based CF, results deduplication

-0.2

-0.1

 0

 0.1

 0.2

AP
 d

iff
er

en
ce

Profile-centric, results deduplication

Figure 8.7: The top level figures show the performance of our two algorithms when the
CiteULike data set is deduplicated; the bottom two figures show the results of deduplication
of the recommendation lists. The figures on the left correspond to the item-based CF
algorithm and the figures on the right correspond to the profile-centric recommendation
algorithm.

We expected the metadata-based algorithm to show the greatest benefits from removing
all duplicate content but we do not find any strong evidence for this. One reason for this
is that we find less duplicates than we intuitively expected, which automatically lowers
the possible effect deduplication could have. In addition, we believe that too many of
the duplicate pairs we did identify within user profiles are misclassified as duplicates and
replaced by a single item. While our classifier performs well on a 1:1 downsampled data
set, the actual percentage of duplicates on CiteULike is orders of magnitude lower. We
believe our downsampling might have been too much in favor of the positive instances,
which caused the classifier to generate too many false positives on the complete CiteULike
data set. There are several things that could be improved upon in future experiments:

• One of the most straightforward ways of increasing the performance of the duplicate
classifier is increasing the size of our training set. In the past prediction accuracy
has been shown to keep increasing with the size of the training set (Brill and Banko,
2001). Adding more training examples means the classifier will get better at recog-
nizing the different ways that duplicates ‘sneak’ into the system. It will also result in a
a data set with a more realistic proportion of duplicates. Perhaps with such a data set,
another ratio of positive to negative examples would also provide better performance
than the 1:1 ratio we found in Subsection 8.3.3.

Chapter 8. Duplicates 164

• A cursory glance at some of the misclassified pairs reveals cases where a high title
similarity was caused by an overlap in phrases such as “The history of the”, but then
with differing final nouns. Future work should look into weighting different types
of words, such as determiners and prepositions, when matching phrases, or possibly
filtering out the stop words altogether. Some mistakes are hard to avoid however: for
instance, we found two genuinely different items in our data set that were both titled
“The Semantic Web”, but written by different authors in different years. With a strong
focus on features that represent the TITLE field, however, these will almost always be
classified as false positives.

• We used a blocking scheme based on item popularity to limit the number of compar-
isons, but perhaps a sorted neighborhood scheme would result in less false negatives
and improve the quality of the classifier.

While we are not able to provide a conclusive, positive answer about the influence of dedu-
plication on recommendation, we believe the task itself is still a vital one. Future work that
takes the above suggestions into consideration should be able to give a more precise picture
of the influence of duplicate content on social bookmarking websites.

8.5 Chapter Conclusions and Answer to RQ 5

In this chapter we attempted to determine what the influence of duplicate content is on
social bookmarking systems, as covered by our fifth and final research question and its two
subquestions.

RQ 5 How big of a problem is the entry of duplicate content for social book-
marking services?

RQ 5a Can we construct an algorithm for automatic duplicate detection?

RQ 5b What influence do duplicates have on recommendation performance?

We argued that duplicate entries of the same item can cause the same kind of problems for
social bookmarking as spam content. To quantify the problem we examined our data set
collected from the CiteULike website, which does not do extensive deduplication of data en-
tered by the users. We collected a small training set of nearly 3,000 item pairs and annotated
them manually as being duplicates or not. This training set was then used to construct a
duplicate item classifier for this pairwise detection task with acceptable performance at first
glance (RQ 5a). Because of the large size of our complete CiteULike data set, we employed a
heuristic method called popularity blocking to bring the number of necessary classifications
down to manageable proportions. Classifying the entire CiteULike data set then resulted in
the detection of over 9,000 duplicate pairs. We found no relation between the popularity of
an original item and the number of duplicates it spawns (RQ 5). Finally, we took a closer
look at the influence of duplicate on recommendation performance by examining the effects

Chapter 8. Duplicates 165

of deduplication on the data set and deduplication of the list of resulting recommendations
(RQ 5b). We tested a CF and a content-based approach and found that deduplication was
not beneficial for either algorithm or deduplication option. We believe our duplicate item
classifier was not good enough at identifying the real duplicate pairs and that this is the
reason for our negative results. A larger training set, a better training regimen (e.g., an
optimized downsampling ratio), and better similarity features should be able to remedy this
problem in future work.

III
CONCLUSION

In Part I of the thesis, we covered the core of our recommendation experiments, and exam-
ined how to incorporate information from the folksonomy and metadata into recommenda-
tion algorithms. In addition, we examined if it was possible to combine the recommenda-
tions generated by our algorithms and improve recommendation performance by exploiting
the complementarity of our different algorithms. In Part II, we zoomed in on two specific
growing pains that social bookmarking services encounter as they become more popular:
spam and duplicate content. We quantified how common these problems are, and proposed
algorithms for the automatic detection of spam and duplicate content. We also investigated
the influence they can have on recommending items for social bookmarking websites.

We come to a conclusion of this thesis in this final part. We recall our five research questions
and summarize the answers to each of them. We provide practical guidelines for implement-
ing a recommender system on a social bookmarking website. Then we list what we believe
to be our main contributions with this work, and we conclude with recommendations for
future research.

167

C
H

A
P

T
E

R 9
DISCUSSION AND CONCLUSIONS

In this thesis we have examined how recommender systems can be applied to the domain of
social bookmarking. More specifically, we have investigated the task of item recommenda-
tion, where interesting and relevant items—bookmarks or scientific articles—are retrieved
and recommended to the user, based on a variety of information sources about and char-
acteristics of the user and the items. The recommendation algorithms we proposed were
based on two different characteristics: the usage data contained in the folksonomy, and
the metadata describing the bookmarks or articles on a social bookmarking website. We
formulated the following problem statement for the thesis in Chapter 1.

PS How can the characteristics of social bookmarking websites be exploited to
produce the best possible item recommendations for users?

In this chapter we conclude the thesis. We start by answering our five main research ques-
tions in Section 9.1. In Section 9.2 we offer a set of practical recommendations for social
bookmarking services seeking to implement a recommender system. We summarize our five
main contributions in Section 9.3. We conclude this chapter in Section 9.4, where we list
future research directions, drawing on the work described in this thesis.

9.1 Answers to Research Questions

Our problem statement led us to formulate five main research questions. Along the way,
seven additional subquestions were formulated as well. In this section we summarize the
answers to those twelve research questions. The first three research questions focused on
how the two key characteristics of social bookmarking websites—the folksonomy and the
metadata—can be utilized to produce the best possible recommendations for users?

RQ 1 How can we use the information represented by the folksonomy to sup-
port and improve recommendation performance?

169

Chapter 9. Discussion and Conclusions 170

In answering our first research question we focused on using the tags present in the broad
folksonomy of social bookmarking systems, which describe the content of an item and can
therefore be used in determining the similarity between two objects. We extended a stan-
dard nearest-neighbor CF algorithm with different tag similarity metrics to produce our
TOBCF and TIBCF algorithms. We found that the performance of item-based filtering can
be improved by using the item similarities based on the overlap in the tags assigned to those
items (TOBCF). The reason for this is reduced sparsity in the item profile vectors; something
we did not find in user-based TOBCF, which as a result did not benefit from using tag similar-
ity. Bookmark recommendation is affected more strongly than reference recommendation.
Our TIBCF algorithms did not produce competitive results. We may therefore conclude that
tagging intensity is not a good measure of user and item similarity.

An examination of merging different types of similarity in our SimFuseCF algorithm yielded
inconclusive results. We compared our algorithms with two state-of-the-art GBCF approaches:
a graph-based algorithm using random walks and a tag-aware fusion algorithm. Here, we
observed that our algorithm outperformed the random walk algorithm. The tag-aware fu-
sion approach outperformed our own TBCF algorithms by fusing different representations
and algorithms. On the basis of these results we may conclude (1) that tags can be used
successfully to improve performance, and (2) that usage data and tagging data have to be
combined to achieve the best performance.

RQ 2 How can we use the item metadata available in social bookmarking sys-
tems to provide accurate recommendations to users?

To answer RQ 2, we proposed four different algorithms, divided into two classes: two
content-based filtering approaches and two hybrid approaches. In content-based filtering,
a profile-centric approach, where all of the metadata assigned by a user is matched against
metadata representations of the items, performed better than matching posts with each
other because of sparseness issues. We also compared two hybrid CF approaches that used
the metadata representations to calculate the user and item similarities. Here, we found
that item-based filtering with the metadata-derived similarities performed best. What the
best overall metadata-based algorithm is, is dependent on the data set. In Chapter 5, we
formulated the following two additional subquestions.

RQ 2a What type of metadata works best for item recommendation?

RQ 2b How does content-based filtering using metadata compare with folk-
sonomic recommendations?

We found that while sparsity of the metadata field does have an influence on recommenda-
tion performance, the quality of the information is just as important. Based on the experi-
mental results we may conclude that combining all intrinsic metadata fields together tends
to give the best performance, whereas extrinsic information, i.e., information not directly
related to the content, does not (RQ 2a). Finally, compared to the folksonomic recommen-
dation algorithms proposed, recommending using metadata works better on three of our

Chapter 9. Discussion and Conclusions 171

four data sets. Hence, we may conclude that it is viable choice for recommendation despite
being underrepresented in the related work so far (RQ 2b).

RQ 3 Can we improve performance by combining the recommendations gen-
erated by different algorithms?

The answer to this third research question is positive: combining different recommendation
runs yielded better performance compared to the individual runs on all data sets (RQ 3).
We formulated an additional, more specific research question in Chapter 6.

RQ 3a What is the best recipe for combining the different recommendation
algorithms?

In our experiments, weighted fusion methods consistently outperformed the unweighted
ones, because not every run contributes equally to the final result. A second ingredient
for successful fusion is using a combination method that rewards documents that show
up in more of the individual runs, harnessing the Chorus/Authority effect, and improving
the ranking of those items retrieved by more runs. Thirdly, the most successful combina-
tions came from fusing the results of recommendation algorithms and representations that
touched upon different aspects of the item recommendation process. Hence we may con-
clude that the theory underlying data fusion in IR is confirmed for recommender systems.

Our first three research questions were answered by taking a quantitative, system-based ap-
proach to evaluation, i.e., we simulated the user’s interaction with our proposed recommen-
dation algorithms in a laboratory setting. Such an idealized perspective does not take into
account the growing pains that accompany the increasing popularity of social bookmarking
websites: spam and duplicate content. We focused on these problems by formulating RQ 4
and RQ 5. The fourth research question addresses the problem of spam.

RQ 4 How big a problem is spam for social bookmarking services?

We examined two of our collections, CiteULike and BibSonomy, for spam and found that
these data sets contain large amounts of spam, ranging from 30% to 93% of all users marked
as spammers (RQ 4). We formulated two additional research questions in Chapter 7.

RQ 4a Can we automatically detect spam content?

RQ 4b What influence does spam have on the recommendation performance?

We showed that it is possible to train a classifier to detect spam users in a social bookmark-
ing system automatically by comparing all of the metadata they have added together, to the
metadata added by genuine users and by other spammers. This is best done at the user level
of granularity instead of at a more fine-grained level (RQ 4a). Finally, we examined the in-
fluence of spam on recommendation performance by extending our BibSonomy bookmarks

Chapter 9. Discussion and Conclusions 172

data set with the spam entries we filtered out earlier. We tested a collaborative filtering and
a content-based approach and found that spam has a negative effect on recommendation.
Based on our experimental results we may conclude that the content-based approach was
affected most by the spam presence. However, all result lists were unacceptably polluted
with spam items, proving the necessity of adequate spam detection techniques (RQ 4b).

To address the problem of duplicate content on social bookmarking websites, we formu-
lated the fifth research question and two additional, more specific research questions in
Chapter 8.

RQ 5 How big a problem is the entry of duplicate content for social book-
marking services?

RQ 5a Can we construct an algorithm for automatic duplicate detection?

RQ 5b What influence do duplicates have on recommendation performance?

We examined one of our data sets, CiteULike, to quantify the problem of duplicate content
(RQ 5). We constructed a training set and trained a duplicate identification classifier which
found a small percentage of duplicates (RQ 5a). We found that these duplicate items follow
a Zipfian distribution with a long tail, just as regular items do, which means that certain
duplicates can be quite widespread (RQ 5). Finally, we examined the influence of duplicates
on recommendation performance by creating a deduplicated version of our CiteULike data
set. We tested a collaborative filtering and a content-based approach, but did not find
any clear effect of deduplication on recommendation, because our duplicate identification
classifier was not sufficiently adequate (RQ 5b).

9.2 Recommendations for Recommendation

Based on the answers to our research questions, we can offer a set of recommendations
for social bookmarking services seeking to implement a recommender system. Note that
our findings are specific to the task of recommending relevant items to users based on
their profile; we cannot guarantee that our recommendations hold for other tasks such as
personalized search or filling out reference lists.

Social bookmarking websites have two options at their disposal that both work equally well:
recommending items using only the broad folksonomy or using the metadata assigned to the
items to produce recommendations. The latter option of recommendation based on meta-
data is a good option when the website already has a good search infrastructure in place.
In that case it is relatively easy to implement a metadata-based recommender system. An
added advantage of having a good search engine is that it is also useful for detecting spam
users and content with high accuracy. Recommendation using the information contained in
the folksonomy is a good approach as well: here, we recommend implementing an item-
based filtering algorithm that uses tag overlap between items to calculate the similarity.

Chapter 9. Discussion and Conclusions 173

However, since not all users tag their items, it would be even better to merge the tag in-
formation with the usage information before calculating the item similarities as suggested
by Tso-Sutter et al. (2008). Depending on efficient implementation, performance can be
greatly increased by combining the recommendations of different algorithms before they
are presented to the user. It is important here to combine approaches that focus on different
aspects of the task, such as different representations or different algorithms, preferably all.

To provide the user with a satisfactory experience it is important to perform spam and
duplicate detection. While they may not influence the recommendations to a strong degree,
their presence in the results list can be enough to for a user to lose trust in the recommender
system. This illustrates that the success of any recommender system depends on the users,
and whether or not they are satisfied with the system as a whole. Proper user testing of the
system is therefore essential, and we will come back to this in Section 9.4.

9.3 Summary of Contributions

In this thesis we performed a principled investigation of the usefulness of different algo-
rithms and information sources for recommending relevant items to users of social book-
marking services. Below we list the following five contributions we have made.

1. We examined different ways of using the information present in a folksonomy for
recommendation, by extending a standard class of Collaborative Filtering algorithms
with information from the folksonomy. These extensions were then compared to other
state-of-the-art approaches, and shown to be competitive.

2. We determined the best way of using item metadata for recommendation, and pro-
posed several new and hybrid algorithms. These algorithms were shown to be com-
petitive with the more popular usage-based approaches that use the folksonomy. We
were the first to perform such a comparison of content-based recommendation with
collaborative filtering for social bookmarking services.

3. Compared to related work, we took a critical look at different methods for combining
recommendations from different algorithms on the same data set. We showed that
combining different algorithms and different representations, that all cover different
aspects of the recommendation task, yields the best performance, confirming earlier
work in the field of IR.

4. We have performed our experiments on publicly available data sets based on three
different social bookmarking services covering two different domains of Web pages
and scientific articles for a thorough evaluation of our work. This enhanced the gen-
eralizability of our findings.

5. We examined two problems associated with the growth of a social bookmarking web-
sites: spam and duplicate content. We showed how prevalent these phenomena are.
Moreover, we proposed methods for automatically detecting these phenomena, and
examined the influence they might have on the item recommendation task.

Chapter 9. Discussion and Conclusions 174

9.4 Future Directions

In any research endeavor there is always room for improvement and the work described in
this thesis is no different. While we have covered many different aspects of recommending
items on social bookmarking websites in this thesis, we believe that the work we have done
is but the tip of the proverbial iceberg. In particular, we acknowledge three fruitful and
desired directions for future research.

User-based Evaluation We remarked already in the first chapter of this thesis that our
choice for system-based evaluation—while necessary to whittle down the overwhelming
number of possible algorithms and representations—leaves out perhaps the most important
component of a recommender system: the user. Herlocker et al. (2004) was among the first
to argue that user satisfaction is influenced by more than just recommendation accuracy,
and McNee (2006) followed up on this work with extensive user studies of recommendation
algorithms. Similarly, we believe it is essential to follow up our work with an evaluation
with real users in realistic situations. Ideally, such experiments would have to be run in
cooperation with one of the more popular social bookmarking websites to attract a large
enough group of test subjects to be able to draw statistically significant conclusions about
any differences in performance. Typically, such live user studies are done by performing
so-called A/B testing, also known as randomized experiments or Control/Treatment testing
(Kohavi et al., 2009). In A/B testing, two or more variants of a website are randomly
assigned to the Web page visitors. With enough test subjects, meaningful conclusions can
be drawn about, for instance, differences in clickthrough rates or purchases. To follow up on
the work described in this thesis, it would be fruitful to compare different recommendation
algorithms, such as the best variants of user-based filtering and item-based filtering, and
the best content-based and hybrid filtering methods. Such user-based evaluation might see
different algorithms rise to the top that were not the best-performing ones in the system-
based experiments. For example, if users turn out to prefer serendipitous recommendations,
we might see user-based CF as the algorithm with the highest clickthrough rate of the
presented recommendations as suggested by McNee et al. (2006). Other influences on
user satisfaction, and just as testable through A/B testing, could include the presences of
explanations: why was a recommendation made. This has been shown to be important to
user satisfaction as well (Herlocker et al., 2000).

Task Differentiation In our experiments we focused on one specific task: item recommen-
dation based on all of the bookmarks or articles added by a user in the past. This is far from
the only task that could be supported on a social bookmarking website. Figure 9.1 shows a
matrix of possible tasks, each in the form of selecting an object type and then finding related
objects, possibly of a different type, to go with them.

So far, related work on social tagging and social bookmarking has focused on ‘Tag recom-
mendation’ and ‘Guided search’, and in this thesis we covered ‘Item recommendation’. Other
interesting and useful tasks still remain largely unexplored, such as finding like-minded
users or selecting specific items to get recommendations for—commonly known as ‘More
like this’ functionality—which could be very useful on a social bookmarking website. Some
of our algorithms already perform some of these functions, such as finding similar users or

Chapter 9. Discussion and Conclusions 175

People 
like me

Item 
recommen‐

da2on

People 
profiling

Item 
experts

More 
like this 

Tag 
recommen‐

da2on

Domain
experts

Guided 
search

Depth 
browsing

USER

ITEM

TAG

USER ITEM TAG

find me ...

Given a  ...

Figure 9.1: An overview of possible research tasks on social bookmarking websites, loosely
adapted from Clements (2007). Most of the related work so far has focused on ‘Tag recom-
mendation’, ‘Guided search’, and ‘Item recommendation’ (shaded cells). In this thesis we
focused on the latter task.

items for the memory-based CF algorithms. However, more specialized algorithms might be
better at this.

In deciding which tasks to tackle it is essential to profile the users: what do they want, how
and what are they currently using the system for? We believe that focusing on real-world
tasks in research can drive successful innovation, but only if the tasks under investigation
are also desired by the users.

Algorithm Comparison In the experimental evaluation of our work, we have focused
on using publicly available data sets and comparing our work against state-of-the-art ap-
proaches, something which is lacking from much of the related work. We are aware, how-
ever, that our comparisons are by no means complete as we picked only two promising
approaches to compare our work with. Model-based collaborative filtering algorithms, for
instance, were lacking from our comparison. In ‘regular’ recommendation experiments in
different domains, model-based algorithms have been shown to hold a slight edge over
memory-based algorithms, but without proper comparison on multiple social bookmarking
data sets we cannot draw any conclusions about this. One natural extension of the work
would therefore be to extend the comparison we made to all of the relevant related work
discussed in Section 4.5. Such a comparison would have to include at least the approaches
by Hotho et al. (2006a), Symeonidis et al. (2008b), Wetzker et al. (2009), Zanardi and
Capra (2008), and Wang et al. (2006b).

REFERENCES

Gediminas Adomavicius and Alexander Tuzhilin. Toward the Next Generation of Recommender
Systems: A Survey of the State-of-the-Art and Possible Extensions. IEEE Transactions on Knowledge
and Data Engineering, 17(6):734–749, 2005.

Charu C. Aggarwal, Joel L. Wolf, Kun-Lung Wu, and Philip S. Yu. Horting Hatches an Egg: A New
Graph-Theoretic Approach to Collaborative Filtering. In KDD ’99: Proceeding of the 5th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 201–212, New
York, NY, USA, 1999. ACM.

David W. Aha, Dennis Kibler, and Marc K. Albert. Instance-Based Learning Algorithms. Machine
Learning, 6(1):37–66, 1991.

Joshua Alspector, Aleksander Koicz, and Nachimuthu Karunanithi. Feature-based and Clique-based
User Models for Movie Selection: A Comparative Study. User Modeling and User-Adapted Interac-
tion, 7(4):279–304, 1997.

Sihem Amer-Yahia, Alban Galland, Julia Stoyanovich, and Cong Yu. From del.icio.us to x.qui.site:
Recommendations in Social Tagging Sites. In SIGMOD ’08: Proceedings of the 2008 ACM SIGMOD
International Conference on Management of Data, pages 1323–1326, New York, NY, USA, 2008.
ACM.

Javed A. Aslam and Mark Montague. Models for Metasearch. In SIGIR ’01: Proceedings of the 24th
Annual International ACM SIGIR Conference on Research and Development in Information Retrieval,
pages 276–284, New York, NY, USA, 2001. ACM.

Marco Balabanovic. Learning to Surf: Multiagent Systems for Adaptive Web Page Recommendation.
PhD thesis, Stanford University, March 1998.

Shumeet Baluja, Rohan Seth, D. Sivakumar, Yushi Jing, Jay Yagnik, Shankar Kumar, Deepak
Ravichandran, and Mohamed Aly. Video Suggestion and Discovery for Youtube: Taking Random
Walks through the View Graph. In WWW ’08: Proceedings of the 17th International Conference on
World Wide Web, pages 895–904, New York, NY, USA, 2008. ACM.

Shenghua Bao, Xiaoyuan Wu, Ben Fei, Guirong Xue, Zhong Su, and Yong Yu. Optimizing Web Search
using Social Annotations. In WWW ’07: Proceedings of the 16th International Conference on World
Wide Web, pages 501–510, New York, NY, USA, 2007. ACM.

Brian T. Bartell, Garrison W. Cottrell, and Richard K. Belew. Automatic Combination of Multiple
Ranked Retrieval Systems. In SIGIR ’94: Proceedings of the 17th Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval, pages 173–181, New York, NY,
1994. Springer-Verlag New York, Inc.

177

References 178

Justin Basilico and Thomas Hofmann. Unifying Collaborative and Content-based Filtering. In ICML
’04: Proceedings of the 21st International Conference on Machine Learning, pages 9–16, New York,
NY, USA, 2004. ACM.

Chumki Basu, Haym Hirsh, and William W. Cohen. Recommendation as Classification: Using So-
cial and Content-Based Information in Recommendation. In Proceedings of the Fifteenth National
Conference on Artificial Intelligence, pages 714–720, 1998.

Chumki Basu, Haym Hirsh, William W. Cohen, and Craig Nevill-Manning. Technical Paper Recom-
mendation: A Study in Combining Multiple Information Sources. Journal of Artificial Intelligence
Research, 1:231–252, 2001.

Patrick Baudisch. Joining Collaborative and Content-based Filtering. In Proceedings of the ACM CHI
Workshop on Interacting with Recommender Systems. ACM, May 1999.

Nicholas J. Belkin and W. Bruce Croft. Information Filtering and Information Retrieval: Two Sides
of the Same Coin? Communications of the ACM, 35(12):29–38, 1992.

Nicholas J. Belkin, C. Cool, W. Bruce Croft, and James P. Callan. The Effect of Multiple Query Rep-
resentations on Information Retrieval System Performance. In SIGIR ’93: Proceedings of the 16th
Annual International ACM SIGIR Conference on Research and Development in Information Retrieval,
pages 339–346, New York, NY, USA, 1993. ACM.

Nicholas J. Belkin, P. Kantor, Edward A. Fox, and J.A. Shaw. Combining the Evidence of Multiple
Query Representations for Information Retrieval. Information Processing & Management, 31(3):
431–448, May-June 1995.

Yaniv Bernstein and Justin Zobel. Redundant Documents and Search Effectiveness. In CIKM ’05:
Proceedings of the Fourteenth International Conference on Information and Knowledge Management,
pages 736–743, New York, NY, USA, 2005. ACM.

Mikhail Bilenko, Raymond Mooney, William Cohen, Pradeep Ravikumar, and Stephen Fienberg.
Adaptive Name Matching in Information Integration. IEEE Intelligent Systems, 18(5):16–23, 2003.

Kerstin Bischoff, Claudiu S. Firan, Wolfgang Nejdl, and Raluca Paiu. Can All Tags be used for Search?
In CIKM ’08: Proceedings of the Seventeenth International Conference on Information and Knowledge
Management, pages 193–202, New York, NY, USA, 2008. ACM.

H.K. Biswas and Maruf Hasan. Using Publications and Domain Knowledge to Build Research Pro-
files: An Application in Automatic Reviewer Assignment. In Proceedings of the 2007 International
Conference on Information and Communication Technology (ICICT’07), pages 82–86, 2007.

Toine Bogers and Antal Van den Bosch. Comparing and Evaluating Information Retrieval Algorithms
for News Recommendation. In RecSys ’07: Proceedings of the 2007 ACM Conference on Recom-
mender Systems, pages 141–144. ACM, October 2007.

Toine Bogers and Antal Van den Bosch. Recommending Scientific Articles using CiteULike. In RecSys
’08: Proceedings of the 2008 ACM Conference on Recommender Systems, pages 287–290. ACM,
October 2008a.

Toine Bogers and Antal Van den Bosch. Using Language Models for Spam Detection in Social Book-
marking. In Proceedings of 2008 ECML/PKDD Discovery Challenge Workshop, pages 1–12, Septem-
ber 2008b.

Toine Bogers and Antal Van den Bosch. Using Language Modeling for Spam Detection in Social
Reference Manager Websites. In Robin Aly, Claudia Hauff, I. den Hamer, Djoerd Hiemstra, Theo
Huibers, and Franciska de Jong, editors, Proceedings of the 9th Belgian-Dutch Information Retrieval
Workshop (DIR 2009), pages 87–94, Enschede, February 2009a.

Toine Bogers and Antal Van den Bosch. Collaborative and Content-based Filtering for Item Rec-
ommendation on Social Bookmarking Websites. In Dietmar Jannach, Werner Geyer, Jill Freyne,
Sarabjot Singh Anand, Casey Dugan, Bamshad Mobasher, and Alfred Kobsa, editors, Proceedings
of the ACM RecSys ’09 workshop on Recommender Systems and the Social Web, pages 9–16, October
2009b.

References 179

Kurt D. Bollacker, Steve Lawrence, and C. Lee Giles. Discovering Relevant Scientific Literature on
the Web. IEEE Intelligent Systems, 15(2):42–47, 2000.

John S. Breese, David Heckerman, and Carl Kadie. Empirical Analysis of Predictive Algorithms
for Collaborative Filtering. In Proceedings of the Fourteenth Annual Conference on Uncertainty in
Artificial Intelligence, pages 43–52, 1998.

Leo Breiman. Bagging Predictors. Machine Learning, 24(2):123–140, 1996.

Eric Brill and Michele Banko. Scaling to Very Very Large Corpora for Natural Language Disam-
biguation. In ACL ’01: Proceedings of the 39th Annual Meeting on Association for Computational
Linguistics, pages 26–33, Morristown, NJ, USA, 2001. ACL.

Peter F. Brown, John Cocke, Stephen A. Della Pietra, Vincent J. Della Pietra, Fredrick Jelinek, John
Lafferty, Robert L. Mercer, and Paul S. Roossin. A Statistical Approach to Machine Translation.
Computational Linguistics, 16(2):79–85, 1990.

Kenneth Bryan, Michael O’Mahony, and Pádraig Cunningham. Unsupervised Retrieval of Attack
Profiles in Collaborative Recommender Systems. In RecSys ’08: Proceedings of the 2008 ACM
Conference on Recommender Systems, pages 155–162, New York, NY, USA, 2008. ACM.

Jay Budzik and Kristian Hammond. Watson: Anticipating and Contextualizing Information Needs.
In Proceedings of the 62nd Annual Meeting of the American Society for Information Science, Medford,
NJ, 1999.

Christopher J.C. Burges. A Tutorial on Support Vector Machines for Pattern Recognition. Data
Mining and Knowledge Discovery, 2(2):121–167, 1998.

Robin Burke. Integrating Knowledge-Based and Collaborative-Filtering Recommender Systems. In
Proceedings of the AAAI Workshop on AI in Electronic Commerce, pages 69–72, 1999.

Robin Burke. Hybrid Recommender Systems: Survey and Experiments. User Modeling and User-
Adapted Interaction, 12(4):331–370, 2002.

Robin Burke, Kristian J. Hammond, and Benjamin C. Young. The FindMe Approach to Assisted
Browsing. IEEE Expert: Intelligent Systems and Their Applications, 12(4):32–40, 1997.

Vannevar Bush. As We May Think. The Atlantic Monthly, 176:101–108, July 1945.

John Canny. Collaborative Filtering with Privacy via Factor Analysis. In SIGIR ’02: Proceedings of
the 25th Annual International ACM SIGIR Conference on Research and Development in Information
Retrieval, pages 238–245, New York, NY, USA, 2002. ACM.

A. Capocci and G. Caldarelli. Folksonomies and Clustering in the Collaborative System CiteULike.
eprint arXiv: 0710.2835, 2007.

Mark J. Carman, Marik Baillie, and Fabio Crestani. Tag Data and Personalized Information Retrieval.
In SSM ’08: Proceeding of the 2008 ACM Workshop on Search in Social Media, pages 27–34, New
York, NY, USA, 2008. ACM.

Ben Carterette, James Allan, and Ramesh Sitaraman. Minimal Test Collections for Retrieval Evalua-
tion. In SIGIR ’06: Proceedings of the 29th Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval, pages 268–275, New York, NY, USA, 2006. ACM.

Ciro Catutto, Christoph Schmitz, Andrea Baldassarri, Vito D. P. Servedio, Vittorio Loreto, Andreas
Hotho, Miranda Grahl, and Gerd Stumme. Network Properties of Folksonomies. AI Communica-
tions Journal, Special Issue on "Network Analysis in Natural Sciences and Engineering", 20:245–262,
2007.

Oscar Celma. Music Recommendation and Discovery in the Long Tail. PhD thesis, Universitat Pompeu
Fabra, Barcelona, Spain, 2008.

Liren Chen and Katia Sycara. WebMate: A Personal Agent for Browsing and Searching. In Proceedings
of the Second International Conference on Autonomous Agents, pages 132–139, New York, NY, 1998.
ACM.

Paul-Alexandru Chirita, Claudi S. Firan, and Wolfgang Nejdl. Pushing Task Relevant Web Links
down to the Desktop. In Proceedings of the 8th ACM International Workshop on Web Information

References 180

and Data Management (WIDM 2006), November 2006.

Paul-Alexandru Chirita, Stefania Costache, Wolfgang Nejdl, and Siegfried Handschuh. P-TAG: Large
Scale Automatic Generation of Personalized Annotation Tags for the Web. In WWW ’07: Proceed-
ings of the 16th International Conference on World Wide Web, pages 845–854, New York, NY, USA,
2007. ACM.

Kimberley Chopin. Indexing, Managing, Navigating – A Micro- and Macro-examination of Folkso-
nomic Tagging. Master’s thesis, Royal School of Library and Information Science, Copenhagen,
Denmark, August 2007.

Mark Claypool, Anuja Gokhale, Tim Miranda, Pavel Murnikov, Dmitry Netes, and Matthew Sartin.
Combining Content-Based and Collaborative Filters in an Online Newspaper. In Proceedings of
ACM SIGIR Workshop on Recommender Systems, August 1999.

Maarten Clements. Personalization of Social Media. In Proceedings of the BCS IRSG Symposium:
Future Directions in Information Access 2007, August 2007.

Maarten Clements, Arjen P. de Vries, and Marcel J.T. Reinders. Optimizing Single Term Queries using
a Personalized Markov Random Walk over the Social Graph. In Proceedings of the ECIR Workshop
on Exploiting Semantic Annotations in Information Retrieval (ESAIR ’08), 2008a.

Maarten Clements, Arjen P. de Vries, and Marcel J.T. Reinders. Detecting synonyms in social tagging
systems to improve content retrieval. In SIGIR ’08: Proceedings of the 31st Annual International
ACM SIGIR Conference on Research and Development in Information Retrieval, pages 739–740, New
York, NY, USA, 2008b. ACM.

W. Bruce Croft. Combining Approaches to Information Retrieval. Advances in Information Retrieval,
7:1–36, 2000.

W. Bruce Croft and R.H. Thompson. I3R: A New Approach to the Design of Document Retrieval
Systems. Journal of the American Society for Information Science, 38(6):389–404, 1987.

W. Bruce Croft, Donald Metzler, and Trevor Strohman. Search Engines: Information Retrieval in
Practice. Addison Wesley, 2009.

Abhinandan Das, Mayur Datar, Ashutosh Garg, and Shyam Rajaram. Google News Personalization:
Scalable Online Collaborative Filtering. In WWW ’07: Proceedings of the 16th International Con-
ference on World Wide Web, pages 271–280, 2007.

Marco De Gemmis, Pasquale Lops, Giovanni Semeraro, and Pierpaolo Basile. Integrating Tags in a
Semantic Content-based Recommender. In RecSys ’08: Proceedings of the 2008 ACM Conference on
Recommender Systems, pages 163–170, New York, NY, USA, 2008. ACM.

Michael De Nie. itList. The Scout Report, 6(18). Retrieved July 16, 2009, from http://
www.mail-archive.com/scout-report@hypatia.cs.wisc.edu/msg00038.html, September
1999.

Brenda Dervin. From the Mind’s Eye of the User: The Sense-Making Qualitative-Quantitative
Methodology. Qualitative Research in Information Management, pages 61–84, 1992.

Susan T. Dumais and Jakob Nielsen. Automating the Assignment of Submitted Manuscripts to Re-
viewers. In SIGIR ’92: Proceedings of the 15th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval, pages 233–244, New York, NY, USA, 1992.
ACM.

Susan T. Dumais, Edward Cutrell, J.J. Cadiz, Gavin Jancke, Raman Sarin, and Daniel C. Robbins.
Stuff I’ve Seen: a System for Personal Information Retrieval and Re-use. In SIGIR ’03: Proceedings
of the 26th Annual International ACM SIGIR Conference on Research and Development in Information
Retrieval, pages 72–79, New York, NY, 2003. ACM.

Ahmed K. Elmagarmid, Panagiotis G. Ipeirotis, and Vassilios S. Verykios. Duplicate Record Detection:
A Survey. IEEE Transactions on Knowledge and Data Engineering, 19(1):1–16, January 2007.

Stephen Farrell and Tessa Lau. Fringe Contacts: People-Tagging for the Enterprise. In Proceedings of
the WWW ’06 Collaborative Web Tagging Workshop, 2006.

http://www.mail-archive.com/scout-report@hypatia.cs.wisc.edu/msg00038.html
http://www.mail-archive.com/scout-report@hypatia.cs.wisc.edu/msg00038.html

References 181

Tom Fawcett. ROC Graphs: Notes and Practical Considerations for Researchers. Machine Learning,
31, 2004.

Ivan P. Fellegi and Alan B. Sunter. A Theory for Record Linkage. Journal of the American Statistical
Association, 64(328):1183–1210, December 1969.

Martin Fenner. Interview with Kevin Emamy. Retrieved July 10, 2009, from http://network.
nature.com/people/mfenner/blog/2009/01/30/interview-with-kevin-emamy, 2009.

S. Ferilli, N. Di Mauro, T.M.A. Basile, F. Esposito, and M. Biba. Automatic Topics Identification for
Reviewer Assignment. Advances in Applied Artificial Intelligence, pages 721–730, 2006.

Edward A. Fox and Joseph A. Shaw. Combination of Multiple Searches. In TREC-2 Working Notes,
pages 243–252, 1994.

Yoram Freund and Robert E. Schapire. Experiments with a New Boosting Algorithm. In L. Saitta,
editor, ICML ’96: Proceedings of the 13th International Conference on Machine Learning, pages
148–156, San Francisco, CA, 1996. Morgan Kaufmann.

Peter Garama and Patrick De Man. Finding Images Fast with Folksonomies. Master’s thesis, Tilburg
University, May 2008.

Natalie Glance, Jean-Luc Meunier, Pierre Bernard, and Damián Arregui. Collaborative Document
Monitoring. In GROUP ’01: Proceedings of the 2001 International ACM SIGGROUP Conference on
Supporting Group Work, pages 171–178, New York, NY, USA, 2001. ACM.

David Goldberg, David Nichols, Brian M. Oki, and Douglas Terry. Using Collaborative Filtering to
Weave an Information Tapestry. Communications of the ACM, 35(12):61–70, 1992.

Ken Goldberg, Theresa Roeder, Dhruv Gupta, and Chris Perkins. Eigentaste: A Constant Time Col-
laborative Filtering Algorithm. Information Retrieval, 4(2):133–151, 2001.

Scott A. Golder and Bernardo A. Huberman. Usage Patterns of Collaborative Tagging Systems.
Journal of Information Science, 32(2):198–208, 2006.

Anatoliy A. Gruzd and Michael B. Twidale. Write While You Search: Ambient Searching of a Digital
Library in the Context of Writing. In Proceedings of the 1st International Workshop on Digital
Libraries in the Context of Users’ Broader Activities (DL-CUBA), Joint Conference on Digital Libraries
(JCDL’06), pages 13–16, 2006.

Zoltán Gyöngyi and Hector Garcia-Molina. Web Spam Taxonomy. In AIRWeb ’05: Proceedings of the
1st International Workshop on Adversarial Information Retrieval on the Web, pages 39–47, Chiba,
Japan, May 2005.

Peter Haase, Marc Ehrig, Andreas Hotho, and Björn Schnizler. Semantic Web and Peer-to-Peer, chapter
Personalized Information Access in a Bibliographic Peer-to-Peer System, pages 143–157. Springer
Berlin Heidelberg, 2004.

Tony Hammond, Timo Hannay, Ben Lund, and Joanna Scott. Social Bookmarking Tools (I) - A
General Review. D-Lib Magazine, 11(4):1082–9873, 2005.

Uri Hanani, Bracha Shapira, and Peretz Shoval. Information Filtering: Overview of Issues, Research
and Systems. User Modeling and User-Adapted Interaction, 11:203–259, 2001.

David Hawking and Justin Zobel. Does Topic Metadata Help With Web Search? Journal of the
American Society for Information Science and Technology, 58(5):613–628, 2007.

Monika Henzinger. Finding Near-duplicate Web Pages: A Large-scale Evaluation of Algorithms. In
SIGIR ’06: Proceedings of the 29th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, pages 284–291, New York, NY, USA, 2006. ACM.

Jonathan L. Herlocker, Joseph A. Konstan, Al Borchers, and John Riedl. An Algorithmic Framework
for Performing Collaborative Filtering. In SIGIR ’99: Proceedings of the 22nd Annual International
ACM SIGIR Conference on Research and Development in Information Retrieval, pages 230–237, New
York, NY, USA, 1999. ACM.

Jonathan L. Herlocker, Joseph A. Konstan, and John Riedl. Explaining Collaborative Filtering Rec-
ommendations. In CSCW ’00: Proceedings of the 2000 ACM Conference on Computer Supported

http://network.nature.com/people/mfenner/blog/2009/01/30/interview-with-kevin-emamy
http://network.nature.com/people/mfenner/blog/2009/01/30/interview-with-kevin-emamy

References 182

Cooperative Work, pages 241–250, New York, NY, USA, 2000. ACM.

Jonathan L. Herlocker, Joseph A. Konstan, Loren G. Terveen, and John T. Riedl. Evaluating Collab-
orative Filtering Recommender Systems. ACM Transactions on Information Systems, 22(1):5–53,
2004.

Mauricio A. Hernández and Salvatore J. Stolfo. The Merge/Purge Problem for Large Databases. In
SIGMOD ’95: Proceedings of the 1995 ACM SIGMOD international conference on Management of
data, pages 127–138, New York, NY, USA, 1995. ACM.

Paul Heymann and Hector Garcia-Molina. Collaborative Creation of Communal Hierarchical Tax-
onomies in Social Tagging Systems. Technical report, Infolab, Stanford University, 2006.

Paul Heymann, Georgia Koutrika, and Hector Garcia-Molina. Fighting Spam on Social Web Sites: A
Survey of Approaches and Future Challenges. IEEE Internet Computing, 11(6):36–45, 2007.

Paul Heymann, Georgia Koutrika, and Hector Garcia-Molina. Can Social Bookmarking Improve Web
Search? In WSDM ’08: Proceedings of the International Conference on Web Search and Web Data
Mining, pages 195–206, New York, NY, USA, 2008a. ACM.

Paul Heymann, Daniel Ramage, and Hector Garcia-Molina. Social Tag Prediction. In SIGIR ’08:
Proceedings of the 31st Annual International ACM SIGIR Conference on Research and Development
in Information Retrieval, pages 531–538, New York, NY, USA, July 2008b. ACM.

Djoerd Hiemstra. A Linguistically Motivated Probabilistic Model of Information Retrieval. In ECDL
’98: Proceedings of the Second European Conference on Research and Advanced Technology for Digital
Libraries, pages 569—584, 1998.

Thomas Hofmann. Latent Semantic Models for Collaborative Filtering. ACM Transactions on Infor-
mation Systems, 22(1):89–115, 2004.

Tzvetan Horozov, Nitya Narasimhan, and Venu Vasudevan. Using Location for Personalized POI Rec-
ommendations in Mobile Environments. In SAINT ’06: Proceedings of the International Symposium
on Applications on Internet, pages 124–129, Washington, DC, USA, 2006. IEEE Computer Society
Press.

Andreas Hotho, Robert Jäschke, Christoph Schmitz, and Gerd Stumme. Information Retrieval in
Folksonomies: Search and Ranking. In Proceedings of the European Semantic Web Conference
2006, 2006a.

Andreas Hotho, Robert Jäschke, Christoph Schmitz, and Gerd Stumme. BibSonomy: A Social Book-
mark and Publication Sharing System. In Proceedings of the Conceptual Structures Tool Interop-
erability Workshop at the 14th International Conference on Conceptual Structures, pages 87–102,
2006b.

Andreas Hotho, Dominik Benz, Robert Jäschke, and Beate Krause. Introduction to the 2008
ECML/PKDD Discovery Challenge Workshop. In Proceedings of 2008 ECML/PKDD Discovery Chal-
lenge Workshop, September 2008.

Peter Ingwersen. Polyrepresentation of Information Needs and Semantic Entities: Elements of a
Cognitive Theory for Information Retrieval Interaction. In SIGIR ’94: Proceedings of the 17th
Annual International ACM SIGIR Conference on Research and Development in Information Retrieval,
pages 101–110, New York, NY, USA, 1994. Springer-Verlag New York, Inc.

Peter Ingwersen. Cognitive Perspectives of Information Retrieval Interaction: Elements of a Cognitive
IR Theory. Journal of Documentation, 52(1):3–50, 1996.

Peter Ingwersen. Context in Information Interaction – Revisited 2006. In Theo Bothma, editor,
Proceedings of the Fourth Biennial DISSAnet Conference. University of Pretoria, November 2006.

Peter Ingwersen and Kalervo Järvelin. The Turn: Integration of Information Seeking and Retrieval in
Context, volume 18 of The Kluwer International Series on Information Retrieval. Springer Verlag,
Dordrecht, The Netherlands, 2005.

Anil K. Jain and D. Zongker. Feature Selection: Evaluation, Application, and Small Sample Perfor-
mance. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(2):153–158, 1997.

References 183

Nathalie Japkowicz and Shaju Stephen. The Class Imbalance Problem: A Systematic Study. Intelligent
Data Analysis, 6(5):429–449, 2002.

Robert Jäschke, Miranda Grahl, Andreas Hotho, Beate Krause, Christoph Schmitz, and Gerd Stumme.
Organizing Publications and Bookmarks in BibSonomy. In Harith Alani, Natasha Noy, Gerd
Stumme, Peter Mika, York Sure, and Denny Vrandecic, editors, Proceedings of the WWW ’07 Work-
shop on Social and Collaborative Construction of Structured Knowledge, Banff, Canada, 2007a.

Robert Jäschke, Leandro Balby Marinho, Andreas Hotho, Lars Schmidt-Thieme, and Gerd Stumme.
Tag Recommendations in Folksonomies. In Joost N. Kok, Jacek Koronacki, Ramon López de Mán-
taras, Stan Matwin, Dunja Mladenic, and Andrzej Skowron, editors, PKDD 2007: Proceedings
of the 11th European Conference on Principles and Practice of Knowledge Discovery in Databases,
volume 4702 of Lecture Notes in Computer Science, pages 506–514. Springer Verlag, 2007b.

Fredrick Jelinek. Self-organized Language Modeling for Speech Recognition. Readings in Speech
Recognition, pages 450–506, 1990.

Thorsten Joachims, Dayne Freitag, and Tom Mitchell. WebWatcher: A Tour Guide for the World
Wide Web. In IJCAI ’97: Proceedings of the Tenth International Joint Conference on Artificial Intel-
ligence, volume 1, pages 770–777. Morgan Kaufmann, 1997.

Jaap Kamps and Maarten De Rijke. The Effectiveness of Combining Information Retrieval Strategies
for European Languages. In Proceedings 19th Annual ACM Symposium on Applied Computing,
pages 1073–1077, 2004.

George Karypis. Evaluation of Item-Based Top-N Recommendation Algorithms. In CIKM ’01: Pro-
ceedings of the Tenth International Conference on Information and Knowledge Management, pages
247–254, New York, NY, USA, 2001. ACM.

Henry Kautz, Bart Selman, and Mehul Shah. Referral Web: Combining Social Networks and Collab-
orative Filtering. Communications of the ACM, 40(3):63–65, 1997.

Margaret E. I. Kipp. Complementary or Discrete Contexts in Online Indexing: A Comparison of User,
Creator, and Intermediary Keywords. Canadian Journal of Information and Library Science, 2006.

Ron Kohavi, Roger Longbotham, Dan Sommerfield, and Randal Henne. Controlled Experiments on
the Web: Survey and Practical Guide. Data Mining and Knowledge Discovery, 18(1):140–181,
2009.

Yehuda Koren. Factorization Meets the Neighborhood: A Multifaceted Collaborative Filtering Model.
In KDD ’08: Proceeding of the 14th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pages 426–434, New York, NY, USA, 2008. ACM.

Georgia Koutrika, Frans Adjie Effendi, Zoltán Gyöngyi, Paul Heymann, and Hector Garcia-Molina.
Combating Spam in Tagging Systems. In AIRWeb ’07: Proceedings of the 3rd International Work-
shop on Adversarial Information Retrieval on the Web, pages 57–64, New York, NY, USA, 2007.
ACM.

Beate Krause, Andreas Hotho, and Gerd Stumme. The Anti-Social Tagger - Detecting Spam in Social
Bookmarking Systems. In AIRWeb ’08: Proceedings of the 4th International Workshop on Adversarial
Information Retrieval on the Web, 2008.

Ralf Krestel and Ling Chen. Using Co-occurrence of Tags and Resources to Identify Spammers. In
Proceedings of 2008 ECML/PKDD Discovery Challenge Workshop, pages 38–46, September 2008.

Shyong K. Lam and John Riedl. Shilling Recommender Systems for Fun and Profit. In WWW ’04:
Proceedings of the 13th International Conference on World Wide Web, pages 393–402, New York,
NY, USA, 2004. ACM.

Renaud Lambiotte and Marcel Ausloos. Collaborative Tagging as a Tripartite Network. Lecture Notes
in Computer Science, 3993(2006):1114–1117, 2006.

F. W. Lancaster. Indexing and Abstracting in Theory and Practice. University of Illinois, Graduate
School of Library and Information, 3rd edition, 2003.

References 184

Ken Lang. NewsWeeder: Learning to Filter Netnews. In ICML ’95: Proceedings of the 12th Inter-
national Conference on Machine Learning, pages 331–339, San Mateo, CA, USA, 1995. Morgan
Kaufmann.

Birger Larsen, Peter Ingwersen, and Berit Lund. Data Fusion According to the Principle of Polyrepre-
sentation. Journal of the American Society for Information Science and Technology, 60(4):646–654,
2009.

Liz Lawley. Tagging vs. Folksonomy. Retrieved July 17, 2009, from http://many.corante.com/
archives/2006/11/02/tagging_vs_folksonomy.php, November 2006.

Julia Lawlor. Web Services Offer Solutions to Bookmark Overload. Retrieved
July 16, 2009, from http://www.nytimes.com/2000/07/13/technology/
web-services-offer-solutions-to-bookmark-overload.html, July 2000.

Joon Ho Lee. Analyses of Multiple Evidence Combination. SIGIR Forum, 31(SI):267–276, 1997.

Rui Li, Shenghua Bao, Ben Fei, Zhong Su, and Yong Yu. Towards Effective Browsing of Large Scale
Social Annotations. In WWW ’07: Proceedings of the 16th International Conference on World Wide
Web, pages 943–951, 2007.

Henry Lieberman. Letizia: An Agent That Assists Web Browsing. In Chris S. Mellish, editor, Pro-
ceedings of the Fourteenth International Joint Conference on Artificial Intelligence (IJCAI-95), pages
924–929, San Mateo, CA, 1995. Morgan Kaufmann.

Greg Linden, Brent Smith, and Jeremy York. Amazon.com Recommendations: Item-to-Item Collab-
orative Filtering. IEEE Internet Computing, 7(1):76–80, 2003.

Veronica Maidel, Peretz Shoval, Bracha Shapira, and Meirav Taieb-Maimon. Evaluation of an
Ontology-Content Based Filtering Method for a Personalized Newspaper. In RecSys ’08: Proceed-
ings of the 2008 ACM Conference on Recommender Systems, pages 91–98, New York, NY, USA, 2008.
ACM.

Christopher D. Manning and Hinrich Schütze. Foundations of Statistical Natural Language Processing.
MIT Press, Cambridge, MA, 1999.

Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. Introduction to Information
Retrieval. Cambridge University Press, 2008.

Cameron Marlow, Mor Naaman, Danah Boyd, and Marc Davis. HT06, tagging paper, taxonomy,
Flickr, academic article, to read. In HYPERTEXT ’06: Proceedings of the seventeenth conference on
Hypertext and hypermedia, pages 31–40, New York, NY, USA, 2006. ACM.

Adam Mathes. Folksonomies - Cooperative Classification and Communication through Shared Meta-
data. Technical report, University of Illinois Urbana-Champaign, 2004.

Sean McNee. Meeting User Information Needs in Recommender Systems. PhD thesis, University of
Minnesota, June 2006.

Sean McNee, Istvan Albert, Dan Cosley, Prateep Gopalkrishnan, Shyong K. Lam, Al Mamunur Rashid,
Joseph A. Konstan, and John Riedl. On the Recommending of Citations for Research Papers. In
CSCW ’02: Proceedings of the 2002 ACM Conference on Computer Supported Cooperative Work,
pages 116–125, New York, NY, USA, 2002. ACM.

Sean McNee, Nishikant Kapoor, and Joseph A. Konstan. Don’t Look Stupid: Avoiding Pitfalls when
Recommending Research Papers. In CSCW ’06: Proceedings of the 2006 ACM Conference on Com-
puter Supported Cooperative Work, pages 171–180, New York, NY, USA, 2006. ACM.

Bhashkar Mehta. Cross-System Personalization: Enabling Personalization across Multiple Systems. PhD
thesis, Universität Duisberg Essen, 2008.

Peter Mika. Ontologies are us: A Unified Model of Social Networks and Semantics. In Yolanda Gil,
Enrico Motta, V. Richard Benjamins, and Mark A. Musen, editors, ISWC 2005, volume 3729 of
Lecture Notes on Computer Science, pages 522–536, Berlin, November 2005. Springer-Verlag.

Gilad Mishne. AutoTag: A Collaborative Approach to Automated Tag Assignment for Weblog Posts.
In WWW ’06: Proceedings of the 15th International Conference on World Wide Web, May 2006.

http://many.corante.com/archives/2006/11/02/tagging_vs_folksonomy.php
http://many.corante.com/archives/2006/11/02/tagging_vs_folksonomy.php
http://www.nytimes.com/2000/07/13/technology/web-services-offer-solutions-to-bookmark-overload.html
http://www.nytimes.com/2000/07/13/technology/web-services-offer-solutions-to-bookmark-overload.html

References 185

Gilad Mishne and Maarten de Rijke. Deriving Wishlists from Blogs - Show us your Blog, and We’ll
Tell you What Books to Buy. In WWW ’06: Proceedings of the 15th International Conference on
World Wide Web, pages 925–926, New York, NY, 2006. ACM.

Gilad Mishne, David Carmel, and Ronny Lempel. Blocking Blog Spam with Language Model Dis-
agreement. In AIRWeb ’05: Proceedings of the 1st International Workshop on Adversarial Informa-
tion Retrieval on the Web, pages 1–6, New York, NY, USA, 2005. ACM.

Bamshad Mobasher, Robin Burke, Chad Williams, and Runa Bhaumik. Analysis and Detection of
Segment-focused Attacks against Collaborative Recommendation. In Olfa Nasraoui, Osmar R.
Zaïane, Myra Spiliopoulou, Bamshad Mobasher, Brij Masand, and Philip S. Yu, editors, Web Min-
ing and Web Usage Analysis, volume 4198 of Lecture Notes in Computer Science, pages 96–118.
Springer, 2006.

Miquel Montaner, Beatriz López, and Josep Lluís de la Rosa. A Taxonomy of Recommender Agents
on the Internet. Artificial Intelligence Review, 19(4):285–330, 2003.

Raymond J. Mooney and Loriene Roy. Content-Based Book Recommending Using Learning for Text
Categorization. In DL ’00: Proceedings of the Fifth ACM Conference on Digital Libraries, pages
195–204, New York, NY, 2000. ACM.

P. Jason Morrison. Tagging and Searching: Search Retrieval Effectiveness of Folksonomies on the
Web. Master’s thesis, Kent State University, May 2007.

Reyn Nakamoto, Shinsuke Nakajima, Jun Miyazaki, and Shunsuke Uemura. Tag-Based Contextual
Collaborative Filtering. In Proceedings of the 18th IEICE Data Engineering Workshop, 2007.

Reyn Nakamoto, Shinsuke Nakajima, Jun Miyazaki, Shunsuke Uemura, Hirokazu Kato, and Yoichi
Inagaki. Reasonable Tag-based Collaborative Filtering for Social Tagging Systems. In WICOW
’08: Proceeding of the 2nd ACM Workshop on Information Credibility on the Web, pages 11–18,
New York, NY, USA, 2008. ACM.

Gonzalo Navarro. A Guided Tour to Approximate String Matching. ACM Computing Surveys, 33(1):
31–88, 2001.

Michael O’Mahony, Neil Hurley, Nicholas Kushmerick, and Guénolé Silvestre. Collaborative Rec-
ommendation: A Robustness Analysis. ACM Transactions on Internet Technology (TOIT), 4(4):
344–377, 2004.

Tim O’Reilly. What Is Web 2.0. Retrieved July 7, 2009, from http://oreilly.com/web2/archive/
what-is-web-20.html, 2005.

Iadh Ounis, Maarten de Rijke, Craig McDonald, Gilad Mishne, and Ian Soboroff. Overview of the
TREC 2006 Blog Track. In TREC 2006 Working Notes, 2006.

Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The PageRank Citation Ranking:
Bringing Order to the Web. Technical report, Stanford Digital Library Technologies Project, 1998.

Parag and Pedro Domingos. Multi-Relational Record Linkage. In Proceedings of the KDD-2004 Work-
shop on Multi-Relational Data Mining, pages 31–48. ACM, 2004.

Patrick Paulson and Aimillia Tzanavari. Combining Collaborative and Content-Based Filtering Using
Conceptual Graphs. Modelling with Words, pages 168–185, 2003.

Michael J. Pazzani. A Framework for Collaborative, Content-based and Demographic Filtering. Arti-
ficial Intelligence Review, 13(5):393–408, 1999.

Michael J. Pazzani, Jack Muramatsu, and Daniel Billsus. Syskill & Webert: Identifying Interesting
Web Sites. In AAAI/IAAI, Vol. 1, pages 54–61, 1996.

Peter Pirolli and Stuart Card. Information Foraging in Information Access Environments. In CHI ’95:
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pages 51–58, New
York, NY, 1995. ACM.

Jay M. Ponte and W. Bruce Croft. A Language Modeling Approach to Information Retrieval. In
SIGIR ’98: Proceedings of the 21st Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, pages 275–281, New York, NY, 1998. ACM.

http://oreilly.com/web2/archive/what-is-web-20.html
http://oreilly.com/web2/archive/what-is-web-20.html

References 186

Reid Priedhorsky, Jilin Chen, Shyong K. Lam, Katherine Panciera, Loren Terveen, and John Riedl.
Creating, Destroying, and Restoring Value in Wikipedia. In Proceedings of GROUP ’07, 2007.

Mari Carmen Puerta Melguizo, Olga Muñoz Ramos, Lou Boves, Toine Bogers, and Antal Van den
Bosch. A Personalized Recommender System for Writing in the Internet Age. In Proceedings
of the LREC 2008 workshop on Natural Language Processing Resources, Algorithms, and Tools for
Authoring Aids, 2008.

Al Mamunur Rashid, Istvan Albert, Dan Cosley, Shyong K. Lam, Sean McNee, Joseph A. Konstan,
and John Riedl. Getting to Know You: Learning New User Preferences in Recommender Systems.
In IUI ’02: Proceedings of the 7th International Conference on Intelligent User Interfaces, pages 127–
134, New York, NY, 2002. ACM.

M. Elena Renda and Umberto Straccia. Web Metasearch: Rank vs. Score-based Rank Aggregation
Methods. In SAC ’03: Proceedings of the 2003 ACM Symposium on Applied Computing, pages
841–846, New York, NY, USA, 2003. ACM.

Paul Resnick and Rahul Sami. The Influence Limiter: Provably Manipulation-Resistant Recommender
Systems. In RecSys ’07: Proceedings of the 2007 ACM Conference on Recommender Systems, pages
25–32, New York, NY, USA, 2007. ACM.

Paul Resnick and Hal R. Varian. Recommender Systems. Communications of the ACM, 40(3):56–58,
1997.

Paul Resnick, Neophytos Iacovou, Mitesh Suchak, Peter Bergstrom, and John Riedl. GroupLens: An
Open Architecture for Collaborative Filtering of Netnews. In CSCW ’94: Proceedings of the 1994
ACM Conference on Computer Supported Cooperative Work, pages 175–186, New York, NY, USA,
1994. ACM.

Bradley J. Rhodes and Patti Maes. Just-In-Time Information Retrieval Agents. IMB Systems Journal,
39(3-4):685–704, 2000.

Stuart J. Russel and Peter Norvig. Artificial Intelligence: A Modern Approach. Prentice-Hall, Upper
Saddle River, NJ, 2nd edition, 2003.

Gerard Salton and Christopher Buckley. Term-Weighting Approaches in Automatic Text Retrieval.
Information Processing & Management, 24(5):513–523, 1988.

Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. Item-Based Collaborative Filtering
Recommendation Algorithms. In WWW ’01: Proceedings of the 10th International Conference on
World Wide Web, pages 285–295, New York, NY, USA, 2001. ACM.

Badrul Sarwar, George Karypis, Joseph A. Konstan, and John Riedl. Incremental SVD-Based Al-
gorithms for Highly Scaleable Recommender Systems. In Proceedings of the Fifth International
Conference on Computer and Information Technology (ICCIT 2002), 2002.

Andrew I. Schein, Alexandrin Popescul, Lyle H. Ungar, and David M. Pennock. Methods and Metrics
for Cold-start Recommendations. In SIGIR ’02: Proceedings of the 25th Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval, pages 253–260, New York,
NY, USA, 2002. ACM.

S. Schmitt and R. Bergmann. Applying Case-based Reasoning Technology for Product Selection and
Customization in Electronic Commerce Environments. In Proceedings of the 12th Bled Electronic
Commerce Conference, Bled, Slovenia, 1999.

Christoph Schmitz, Andreas Hotho, Robert Jäschke, and Gerd Stumme. Mining Association Rules
in Folksonomies. In V. Batagelj, H.-H. Bock, A. Ferligoj, and A. Žiberna, editors, Data Science and
Classification: Proceedings of the 10th IFCS Conference, Studies in Classification, Data Analysis, and
Knowledge Organization, pages 261–270, Heidelberg, July 2006. Springer-Verlag.

Christoph Schmitz, Miranda Grahl, Andreas Hotho, Gerd Stumme, Ciro Cattuto, Andrea Baldassarri,
Vittorio Loreto, and Vito D. P. Servedio. Network Properties of Folksonomies. In Scott Golder and
Frank Smadja, editors, Proceedings of the WWW ’07 Tagging and Metadata for Social Information
Organization Workshop, 2007.

References 187

Stephen B. Seidman. Network Structure and Minimum Degree. Social Networks, 5(5):269–287,
1983.

Upendra Shardanand and Pattie Maes. Social Information Filtering: Algorithms for Automating
“Word of Mouth”. In CHI ’95: Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, pages 210–217, New York, NY, USA, 1995. ACM.

Prashant Sharma. Core Characteristics of Web 2.0 Services. Retrieved July 7, 2009, from http:
//www.techpluto.com/web-20-services/, 2008.

Kaikai Shen and Lide Wu. Folksonomy as a Complex Network. Technical report, Department of
Computer Science, Fudan University, 2005.

Clay Shirky. Ontology is Overrated: Categories, Links, and Tags. Retrieved July 17, 2009, from
http://www.shirky.com/writings/ontology_overrated.html, 2005.

Börkur Sigurbjörnsson and Roelof Van Zwol. Flickr Tag Recommendation based on Collective Knowl-
edge. In WWW ’08: Proceedings of the 17th International Conference on World Wide Web, pages
327–336, New York, NY, USA, 2008. ACM.

Mette Skov, Birger Larsen, and Peter Ingwersen. Inter and Intra-Document Contexts Applied in
Polyrepresentation for Best Match IR. Information Processing & Management, 44:1673–1683,
2008.

Yang Song, Ziming Zhuang, Huajing Li, Qiankun Zhao, Jia Li, Wang-Chien Lee, and C. Lee Giles.
Real-time Automatic Tag Recommendation. In SIGIR ’08: Proceedings of the 31st Annual Interna-
tional ACM SIGIR Conference on Research and Development in Information Retrieval, pages 515–522,
New York, NY, USA, 2008. ACM.

Anselm Spoerri. Authority and Ranking Effects in Data Fusion. Journal of the American Society for
Information Science and Technology, 59(3):450–460, 2007.

Lubomira Stoilova, Todd Holloway, Ben Markines, Ana G. Maguitman, and Filippo Menczer.
GiveALink: Mining a Semantic Network of Bookmarks for Web Search and Recommendation.
In LinkKDD ’05: Proceedings of the 3rd International Workshop on Link Discovery, pages 66–73,
New York, NY, USA, 2005. ACM.

Trevor Strohman, Donald Metzler, and W. Bruce Croft. Indri: A Language Model-based Search Engine
for Complex Queries. In Proceedings of the International Conference on Intelligence Analysis, May
2005.

Trevor Strohman, W. Bruce Croft, and David Jensen. Recommending Citations for Academic Papers.
In SIGIR ’07: Proceedings of the 30th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, pages 705–706, New York, NY, 2007. ACM.

Fabian M. Suchanek, Milan Vojnovic, and Dinan Gunawardena. Social Tags: Meaning and Sugges-
tions. In CIKM ’08: Proceedings of the Seventeenth International Conference on Information and
Knowledge Management, pages 223–232, New York, NY, USA, 2008. ACM.

Panagiotis Symeonidis, Alexandros Nanopoulos, and Yannis Manolopoulos. Tag Recommendations
Based on Tensor Dimensionality Reduction. In RecSys ’08: Proceedings of the 2008 ACM Conference
on Recommender Systems, pages 43–50, New York, NY, USA, 2008a. ACM.

Panagiotis Symeonidis, Maria Ruxanda, Alexandros Nanopoulos, and Yannis Manolopoulos. Ternary
Semantic Analysis of Social Tags for Personalized Music Recommendation. In ISMIR ’08: Proceed-
ings of the 9th International Conference on Music Information Retrieval, pages 219–224, 2008b.

Martin Szomszor, Ciro Cattuto, Harith Alani, Kieron O’Hara, Andrea Baldassarri, Vittorio Loreto, and
Vito D.P. Servedio. Folksonomies, the Semantic Web, and Movie Recommendation. In Proceedings
of the ESWC Workshop on Bridging the Gap between Semantic Web and Web 2.0, 2007.

Robert S. Taylor. Question-Negotiation and Information Seeking in Libraries. College and Research
Libraries, 29:178–194, May 1968.

Nava Tintarev and Judith Masthoff. Similarity for News Recommender Systems. In Proceedings of
the AH’06 Workshop on Recommender Systems and Intelligent User Interfaces, 2006.

http://www.techpluto.com/web-20-services/
http://www.techpluto.com/web-20-services/
http://www.shirky.com/writings/ontology_overrated.html

References 188

B. Towle and C. Quinn. Knowledge Based Recommender Systems Using Explicit User Models. In
Proceedings of the AAAI Workshop on Knowledge-Based Electronic Markets, AAAI Technical Report
WS-00-04, pages 74–77, Menlo Park, CA, 2000. AAAI Press.

Karen H. L. Tso-Sutter, Leandro Balby Marinho, and Lars Schmidt-Thieme. Tag-aware Recommender
Systems by Fusion of Collaborative Filtering Algorithms. In SAC ’08: Proceedings of the 2008 ACM
symposium on Applied computing, pages 1995–1999, New York, NY, USA, 2008. ACM.

Antal Van den Bosch. Wrapped Progressive Sampling Search for Optimizing Learning Algorithm
Parameters. In R. Verbrugge, N. Taatgen, and L. Schomaker, editors, Proceedings of the 16th
Belgian-Dutch Conference on Artificial Intelligence, pages 219–226, 2004.

Mark Van Setten, Mettina Veenstra, Anton Nijholt, and Betsy van Dijk. Case-Based Reasoning as a
Prediction Strategy for Hybrid Recommender Systems. In Proceedings of Advances in Web Intel-
ligence: Second International Atlantic Web Intelligence Conference (AWIC 2004), volume 3034 of
Lecture Notes in Computer Science, pages 13–22, Berlin, 2004. Springer Verlag.

Thomas Vander Wal. Explaining and Showing Broad and Narrow Folksonomies. Retrieved April 29,
2008, from http://www.personalinfocloud.com/2005/02/explaining_and_.html, 2005a.

Thomas Vander Wal. Folksonomy Definition and Wikipedia. Retrieved July 17, 2009, from http:
//www.vanderwal.net/random/entrysel.php?blog=1750, November 2005b.

Christopher C. Vogt and Garrison W. Cottrell. Predicting the Performance of Linearly Combined
IR Systems. In SIGIR ’98: Proceedings of the 21st Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval, pages 190–196, New York, NY, 1998. ACM.

Luis Von Ahn, Ben Maurer, Colin McMillen, David Abraham, and Manuel Blum. reCAPTCHA: Human-
Based Character Recognition via Web Security Measures. Science, 321:1465–1468, September
2008.

Ellen M. Voorhees, Narendra K. Gupta, and Ben Johnson-Laird. Learning Collection Fusion Strate-
gies. In Edward A. Fox, Peter Ingwersen, and Raya Fidel, editors, SIGIR ’95: Proceedings of the 18th
Annual International ACM SIGIR Conference on Research and Development in Information Retrieval,
pages 172–179, New York, NY, 1995. ACM.

Jakob Voß. Tagging, Folksonomy & Co–Renaissance of Manual Indexing? In ISI 2007: Proceedings
of the 10th International Symposium for Information Science, 2007.

Jun Wang, Arjen P. de Vries, and Marcel J. T. Reinders. Unifying User-based and Item-based Collab-
orative Filtering Approaches by Similarity Fusion. In SIGIR ’06: Proceedings of the 29th Annual
International ACM SIGIR Conference on Research and Development in Information Retrieval, pages
501–508, New York, NY, USA, 2006a. ACM.

Xuanhui Wang, Jian-Tao Sun, Zheng Chen, and Chengxiang Zhai. Latent Semantic Analysis for
Multiple-Type Interrelated Data Objects. In SIGIR ’06: Proceedings of the 29th Annual International
ACM SIGIR Conference on Research and Development in Information Retrieval, pages 236–243, New
York, NY, USA, 2006b. ACM.

Duncan J. Watts and Steven H. Strogatz. Collective Dynamics of ’Small-world’ Networks. Nature,
393(6684):440–442, June 1998.

Sholom M. Weiss and Casimir A. Kulikowski. Computer Systems That Learn. Morgan Kaufmann,
1991.

Robert Wetzker. Analyzing Social Bookmarking Systems: A del.icio.us Cookbook. In Proceedings of
the ECAI 2008 Mining Social Data Workshop, pages 26–30. IOS Press, July 2008.

Robert Wetzker, Winfried Umbrath, and Alan Said. A Hybrid Approach to Item Recommendation
in Folksonomies. In ESAIR ’09: Proceedings of the WSDM ’09 Workshop on Exploiting Semantic
Annotations in Information Retrieval, pages 25–29, New York, NY, USA, 2009. ACM.

Brian Whitman and Steve Lawrence. Inferring Descriptions and Similarity for Music from Community
Metadata. In Proceedings of the 2002 International Computer Music Conference, pages 591–598,
2002.

http://www.personalinfocloud.com/2005/02/explaining_and_.html
http://www.vanderwal.net/random/entrysel.php?blog=1750
http://www.vanderwal.net/random/entrysel.php?blog=1750

References 189

David H. Wolpert. Stacked Generalization. Neural Networks, 5(2):241–259, 1992.

Zhichen Xu, Yun Fu, Jianchang Mao, and Difu Su. Towards the Semantic Web: Collaborative Tag
Suggestions. In Proceedings of the WWW ’06 Collaborative Web Tagging Workshop, 2006.

Yusuke Yanbe, Adam Jatowt, Satoshi Nakamura, and Katsumi Tanaka. Can Social Bookmarking
Enhance Search in the Web? In JCDL ’07: Proceedings of the 7th ACM/IEEE Joint Conference on
Digital Libraries, pages 107–116, New York, NY, USA, 2007. ACM.

David Yarowsky and Radu Florian. Taking the Load off the Conference Chairs: Towards a Digital
Paper-Routing Assistant. In Proceedings of the 1999 Joint SIGDAT Conference on Empirical Methods
in NLP and Very Large Corpora, pages 220–230, 1999.

Hilmi Yildirim and Mukkai S. Krishnamoorthy. A Random Walk Method for Alleviating the Sparsity
Problem in Collaborative Filtering. In RecSys ’08: Proceedings of the 2008 ACM Conference on
Recommender Systems, pages 131–138, New York, NY, USA, 2008. ACM.

Ping Yin, Ming Zhang, and Xiaoming Li. Recommending Scientific Literatures in a Collaborative
Tagging Environment. Asian Digital Libraries. Looking Back 10 Years and Forging New Frontiers,
pages 478–481, 2007.

Valentina Zanardi and Licia Capra. Social Ranking: Uncovering Relevant Content using Tag-based
Recommender Systems. In RecSys ’08: Proceedings of the 2008 ACM Conference on Recommender
Systems, pages 51–58, New York, NY, USA, 2008. ACM.

Chengxiang Zhai and John Lafferty. A Study of Smoothing Methods for Language Models Applied to
Information Retrieval. ACM Transactions on Information Systems, 22(2):179–214, 2004.

Ding Zhou, Jiang Bian, Shuyi Zheng, Hongyuan Zha, and C. Lee Giles. Exploring Social Annotations
for Information Retrieval. In WWW ’08: Proceedings of the 17th International Conference on World
Wide Web, pages 715–724, New York, NY, USA, 2008. ACM.

Cai-Nicolas Ziegler, Georg Lausen, and Lars Schmidt-Thieme. Taxonomy-driven Computation of
Product Recommendations. In CIKM ’04: Proceedings of the Thirteenth International Conference on
Information and Knowledge Management, pages 406–415, 2004.

A
P

P
E

N
D

IX A
COLLECTING THE CITEULIKE DATA SET

A.1 Extending the Public Data Dump

We described in Chapter 3 that our CiteULike data set is based on the November 2, 2007
data dump that is made available publicly1 by CiteULike. This dump contains all information
on which articles were posted by whom, with which tags, and at what point in time. Figure
A.1 shows a tiny subset of this data dump.

42 217369743f9df99964fa16439a01f5f3 2006-12-26T02:03:08.605006+00 metabolism
42 217369743f9df99964fa16439a01f5f3 2006-12-26T02:03:08.605006+00 networks
42 217369743f9df99964fa16439a01f5f3 2006-12-26T02:03:08.605006+00 systems_biology
42 473d9d0924d3aafcf26846d7772a0ae5 2005-06-24T01:22:12.696806+01 small_world
42 473d9d0924d3aafcf26846d7772a0ae5 2005-06-24T01:22:12.696806+01 wireing_digrams
42 61baaeba8de136d9c1aa9c18ec3860e8 2004-11-04T02:25:05.373798+00 barabasi
42 61baaeba8de136d9c1aa9c18ec3860e8 2004-11-04T02:25:05.373798+00 ecoli
42 61baaeba8de136d9c1aa9c18ec3860e8 2004-11-04T02:25:05.373798+00 metabolism
42 61baaeba8de136d9c1aa9c18ec3860e8 2004-11-04T02:25:05.373798+00 networks
42 b8f7de09e5c78bdd72b2fd9c4bb00fc2 2006-06-02T18:02:00.510405+01 metabolism
42 b8f7de09e5c78bdd72b2fd9c4bb00fc2 2006-06-02T18:02:00.510405+01 network
43 951c3216b53eeb01d5ddc75ecfe63753 2007-05-11T16:47:11.366525+01 no-tag
43 32c2ddd35515c3fdc1b7731992887015 2007-01-16T19:45:20.535288+00 key--reg ulatory_network
43 32c2ddd35515c3fdc1b7731992887015 2007-01-16T19:45:20.535288+00 key--robustness
43 32c2ddd35515c3fdc1b7731992887015 2007-01-16T19:45:20.535288+00 key--systems_biology
43 32c2ddd35515c3fdc1b7731992887015 2007-01-16T19:45:20.535288+00 type--review
43 86c091c8b7d793966136c07488efe622 2006-12-01T16:02:59.704955+00 robustness

ARTICLE ID USER ID (HASHED) TIMESTAMP TAG

Figure A.1: A small subset of a CiteULike data dump. The columns from left to right
contain the article IDs, user IDs. time stamps, and tags.

Each line represents a user-item-tag triple with the associated timestamp of the posting, so
if a user posted an article with n tags, then this resulted in n rows in the file for that article-
user pair. If a user added no tags, then the article-user pair is represented by 1 row with
the tag no-tag. On the CiteULike website, users can pick their own user name, but these

1Available from http://www.citeulike.org/faq/data.adp.

191

http://www.citeulike.org/faq/data.adp

Appendix A. Collecting the CiteULike Data Set 192

were hashed in the data dumps using the MD5 cryptographic hashing function for privacy
reasons. Unfortunately, most of the interesting features on the CiteULike website are linked
to the user names and not to the hashed IDs. For instance, each article has a separate
page for the users that added it, which contain the personal metadata such as reviews and
comments. Unfortunately, these article pages display only the CiteULike user names, which
means that for us to be able to link the data dump to the personal metadata we had to
match each user name to its corresponding MD5 hashes.

Directly applying the MD5 hashing function to the username did not result in any matching
hashes, which suggests that CiteULike uses a salt to make reverse lookup practically impos-
sible2. We therefore had to find another way of matching the user names to the hashes.
First, we crawled all user-specific article pages. Each article on CiteULike has its own
generic page, which can be accessed by inserting the article ID from the CiteULike data
dump in a URL of the form http://www.citeulike.org/article/ARTICLE_ID. Each
article page contains metadata and also lists, by user name, all users that have added
the article to their personal library. We crawled all article pages and collected all infor-
mation. After acquiring the names of the users that added an article, we also crawled
all user-specific versions of these pages. These can be accessed at a URL of the form
http://www.citeulike.org/user/USER_NAME/article/ARTICLE_ID. Using the col-
lected lists of user names, we collected the personal metadata added by each separate user
such as tags and comments.

By collecting these article-user name-tag triples from the CiteULike article pages, we were
then able to match user names to MD5 hashes3. This turned the alignment problem into
a matter of simple constraint satisfaction. For a single article A there might be multiple
authors who added the same tag(s) to A, but perhaps only one of those authors added
another article B with his own unique tags. By identifying those posts that matched uniquely
on articles and tags, we were able to align that user’s name with the hashed ID. We ran this
alignment process for 7 iterations, each round resolving more ambiguous matches, until no
more authors could be matched. Table A.1 shows statistics of our progress in aligning the
usernames and hashes.

Table A.1: Statistics of the user alignment process. Each cell lists how many users and
associated articles and tags were matched after the seven steps.

Data dump Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7

Users 27,133 24,591 25,182 25,260 25,284 25,292 25,352 25,375
Articles 813,186 763,999 780,244 780,837 780,851 780,851 803,278 803,521
Tags 235,199 224,061 227,678 227,844 227,848 227,848 232,794 232,837

After seven rounds, 93.5% of the initial 27,133 user names were correctly identified. Fur-
thermore, 98.8% of all articles were retained and 99.0% of all tags. We believe that this
represents a substantial enough subset of our the original data dump to proceed with further

2A salt is a series of random bits used as additional input to the hashing function. It makes reverse lookup
using dictionary attacks more complicated by effectively extending the length and potentially the complexity of
the password.

3Matching usernames and hashes on the specific timestamps when articles were added would have been
easier and more specific, but this was not possible: the timestamps were not present on the crawled Web pages.

Appendix A. Collecting the CiteULike Data Set 193

experiments. Figure A.2 shows the same extract of the CiteULike data dump of Figure A.1
with the resolved author names. For instance, we were able to resolve the user ID hash
61baaeba8de136d9c1aa9c18ec3860e8 to the user name camster.

42 alexg 2006-12-26T02:03:08.605006+00 metabolism
42 alexg 2006-12-26T02:03:08.605006+00 networks
42 alexg 2006-12-26T02:03:08.605006+00 systems_biology
42 barry 2005-06-24T01:22:12.696806+01 small_world
42 barry 2005-06-24T01:22:12.696806+01 wireing_digrams
42 camster 2004-11-04T02:25:05.373798+00 barabasi
42 camster 2004-11-04T02:25:05.373798+00 ecoli
42 camster 2004-11-04T02:25:05.373798+00 metabolism
42 camster 2004-11-04T02:25:05.373798+00 networks
42 tny 2006-06-02T18:02:00.510405+01 metabolism
42 tny 2006-06-02T18:02:00.510405+01 network
43 OriginalLurch 2007-05-11T16:47:11.366525+01 no-tag
43 adepace 2007-01-16T19:45:20.535288+00 key--regulatory_network
43 adepace 2007-01-16T19:45:20.535288+00 key--robustness
43 adepace 2007-01-16T19:45:20.535288+00 key--systems_biology
43 adepace 2007-01-16T19:45:20.535288+00 type--review
43 anatiferous 2006-12-01T16:02:59.704955+00 robustness

ARTICLE 
ID

USER 
NAME

TIMESTAMP TAG

Figure A.2: The same small subset of the CiteULike data dump from Figure A.1 after
aligning the user names with the hashed IDs. The columns from left to right contain the
article IDs, user names. time stamps, and tags.

A.2 Spam Annotation

Figure A.3 illustrates the straightforward interface we created for the spam annotation pro-
cess. For each user it randomly selects a maximum of five articles and displays the article
title (if available) and the associated tags. It also shows a link to the CiteULike page of
the article. Preliminary analysis showed that articles that were clearly spam were usually
already removed by CiteULike and returned a 404 Not Found error. We therefore instructed
our judges to check the CiteULike links if a user’s spam status was not obvious from the
displayed articles. Missing article pages meant users should be marked as spam. In this
process, we assumed that although spam users might add real articles to their profile in an
attempt to evade detection, real dedicated CiteULike users would never willingly add spam
articles to their profile. Finally, we noticed that spam content was injected into CiteULike
in many different languages. From the experience of the annotators, most spam was in
English, but considerable portions were in Spanish, Swedish, and German. Other languages
in which spam content was found were, among others, Dutch, Finnish, Chinese, and Italian.

Of the 5,200 users in our subset, 3,725 (or 28.4%) were spam users, which is a much
smaller proportion than in the BibSonomy system, but still a considerable part of the entire
data set. The numbers in Table 7.1 are reported for this 20% sample of CiteULike users. It is
likely that such a sizable chunk of spam can have a significant effect on the recommendation
performance. We test this hypothesis about the influence of spam in Section 7.4.

Appendix A. Collecting the CiteULike Data Set 194

Figure A.3: A screenshot of the interface used to annotate a subset of CiteULike users as
possible spam users. The user in the screenshot is a typical example of a spammer. For
every user, we display up to five randomly selected posts with the article title and the
assigned tags.

A
P

P
E

N
D

IX B
GLOSSARY OF RECOMMENDATION RUNS

In this appendix we list the run names used in Chapter 4 with a brief explanation for the
convenience of the reader in Tables B.1 and B.2.

Table B.1: Run names used in Chapter 4.

Run name Run description

U-BIN-SIM User-based CF using binary vectors from the ratings matrix R and
cosine similarity (Subsection 4.3.1).

U-BIN-IDF-SIM User-based CF using tf·idf-weighted vectors from the ratings matrix R
and cosine similarity (Subsection 4.3.1).

I-BIN-SIM Item-based CF using binary vectors from the ratings matrix R and
cosine similarity (Subsection 4.3.1).

I-BIN-IDF-SIM Item-based CF using tf·idf-weighted vectors from the ratings matrix
R and cosine similarity (Subsection 4.3.1).

UT-JACCARD-SIM User-based CF using binary vectors from the UT matrix and Jaccard
overlap (Subsection 4.4.1).

UT-DICE-SIM User-based CF using binary vectors from the UT matrix and Dice’s
coefficient (Subsection 4.4.1).

UT-BIN-SIM User-based CF using binary vectors from the UT matrix and cosine
similarity (Subsection 4.4.1).

UT-TF-SIM User-based CF using tag frequency vectors from the UT matrix and
cosine similarity (Subsection 4.4.1).

UT-TFIDF-SIM User-based CF using tf·idf-weighted tag frequency vectors from the
UT matrix and cosine similarity (Subsection 4.4.1).

IT-JACCARD-SIM Item-based CF using binary vectors from the IT matrix and Jaccard
overlap (Subsection 4.4.1).

IT-DICE-SIM Item-based CF using binary vectors from the IT matrix and Dice’s
coefficient (Subsection 4.4.1).

195

Appendix B. Glossary of Recommendation Runs 196

Table B.2: Run names used in Chapter 4 (continued).

Run name Run description

IT-BIN-SIM Item-based CF using binary vectors from the IT matrix and co-
sine similarity (Subsection 4.4.1).

IT-TF-SIM Item-based CF using tag frequency vectors from the IT matrix
and cosine similarity (Subsection 4.4.1).

IT-TFIDF-SIM Item-based CF using tf·idf-weighted tag frequency vectors from
the IT matrix and cosine similarity (Subsection 4.4.1).

U-TF-SIM User-based CF using frequency vectors from the ratings matrix
R and cosine similarity (Subsection 4.4.2).

U-TFIDF-SIM User-based CF using tf·idf-weighted frequency vectors from the
ratings matrix R and cosine similarity (Subsection 4.4.2).

I-TF-SIM Item-based CF using frequency vectors from the ratings matrix
R and cosine similarity (Subsection 4.4.2).

I-TFIDF-SIM Item-based CF using tf·idf-weighted frequency vectors from the
ratings matrix R and cosine similarity (Subsection 4.4.2).

User-based fusion User-based CF using fused user-user similarities (Subsection
4.4.3).

Item-based fusion Item-based CF using fused item-item similarities (Subsection
4.4.3).

U-TSO-SUTTER-SIM User-based CF using tag frequency vectors from the combined
R|UI matrix and cosine similarity (Subsection 4.6.1).

I-TSO-SUTTER-SIM Item-based CF using tag frequency vectors from the combined
R|ITT matrix and cosine similarity (Subsection 4.6.1).

Tag-aware fusion Weighted combination of U-TSO-SUTTER-SIM and I-TSO-SUTTER-
SIM runs (Subsection 4.6.1).

Random walk model Random walk model according to Clements et al. (2008a) (Sub-
section 4.6.2).

A
P

P
E

N
D

IX C
OPTIMAL FUSION WEIGHTS

In this appendix we list the optimal run weights for the ten weighted fusion experiments
described in Chapter 6. We list the optimal weights for each of our four data sets separately
in Tables C.2 through C.5. Table C.1 lists the IDs we use to refer to the individual runs in
those four tables.

Table C.1: Run IDs used in Tables C.2–C.5.

Run ID Run description

R1 Best user-based run based on usage similarity (from Section 4.3)
R2 Best item-based run based on usage similarity (from Section 4.3)
R3 Best user-based run based on tag overlap similarity (from Subsection 4.4.1)
R4 Best item-based run based on tag overlap similarity (from Subsection 4.4.1)
R5 Best profile-centric run based on metadata (from Subsection 5.2.1)
R6 Best post-centric run based on metadata (from Subsection 5.2.1)
R7 Best user-based run based on metadata (from Subsection 5.2.2)
R8 Best item-based run based on metadata (from Subsection 5.2.2)

197

Appendix C. Optimal Fusion Weights 198

Table C.2: Optimal fusion weights for the different fusion experiments on the Bibsonomy
bookmarks data set.

Run ID Method R1 R2 R3 R4 R5 R6 R7 R8

Fusion A
Weighted CombSUM 0.3 1.0 - - - - - -
Weighted CombMNZ 0.3 1.0 - - - - - -
Weighted CombANZ 0.2 1.0 - - - - - -

Fusion B
Weighted CombSUM - - 0.4 1.0 - - - -
Weighted CombMNZ - - 0.4 0.8 - - - -
Weighted CombANZ - - 0.4 0.9 - - - -

Fusion C
Weighted CombSUM 0.5 - - 0.7 - - - -
Weighted CombMNZ 0.2 - - 0.8 - - - -
Weighted CombANZ 0.3 - - 0.8 - - - -

Fusion D
Weighted CombSUM - - - - 1.0 0.1 - -
Weighted CombMNZ - - - - 1.0 0.1 - -
Weighted CombANZ - - - - 0.9 1.0 - -

Fusion E
Weighted CombSUM - - - - - - 0.5 0.7
Weighted CombMNZ - - - - - - 0.1 0.9
Weighted CombANZ - - - - - - 0.7 1.0

Fusion F
Weighted CombSUM - - - - 1.0 - - 0.4
Weighted CombMNZ - - - - 0.5 - - 0.2
Weighted CombANZ - - - - 0.1 - - 0.9

Fusion G
Weighted CombSUM - - - 0.5 0.7 - - -
Weighted CombMNZ - - - 0.2 0.9 - - -
Weighted CombANZ - - - 1.0 0.2 - - -

Fusion H
Weighted CombSUM 0.3 0.9 0.4 0.8 - - - -
Weighted CombMNZ 0.2 1.0 0.3 1.0 - - - -
Weighted CombANZ 0.1 1.0 0.2 0.4 - - - -

Fusion I
Weighted CombSUM - - - - 0.3 0.1 0.5 0.7
Weighted CombMNZ - - - - 0.3 0.4 0.2 0.8
Weighted CombANZ - - - - 0.3 0.4 0.2 1.0

Fusion J
Weighted CombSUM 0.3 0.8 0.3 0.6 0.9 0.8 0.0 0.8
Weighted CombMNZ 0.5 0.7 0.4 1.0 0.9 0.4 0.0 0.7
Weighted CombANZ 0.2 0.6 0.2 0.8 0.0 0.9 0.6 1.0

Appendix C. Optimal Fusion Weights 199

Table C.3: Optimal fusion weights for the different fusion experiments on the Delicious
bookmarks data set.

Run ID Method R1 R2 R3 R4 R5 R6 R7 R8

Fusion A
Weighted CombSUM 0.6 1.0 - - - - - -
Weighted CombMNZ 0.9 0.9 - - - - - -
Weighted CombANZ 1.0 0.9 - - - - - -

Fusion B
Weighted CombSUM - - 0.0 1.0 - - - -
Weighted CombMNZ - - 0.0 1.0 - - - -
Weighted CombANZ - - 0.0 0.9 - - - -

Fusion C
Weighted CombSUM 0.1 - - 1.0 - - - -
Weighted CombMNZ 0.0 - - 0.9 - - - -
Weighted CombANZ 0.1 - - 1.0 - - - -

Fusion D
Weighted CombSUM - - - - 0.0 0.9 - -
Weighted CombMNZ - - - - 0.0 0.7 - -
Weighted CombANZ - - - - 0.0 0.9 - -

Fusion E
Weighted CombSUM - - - - - - 1.0 0.8
Weighted CombMNZ - - - - - - 1.0 0.0
Weighted CombANZ - - - - - - 0.4 1.0

Fusion F
Weighted CombSUM - - - - - 0.9 0.6 -
Weighted CombMNZ - - - - - 0.7 0.2 -
Weighted CombANZ - - - - - 1.0 0.5 -

Fusion G
Weighted CombSUM - - - 0.9 - - 0.0 -
Weighted CombMNZ - - - 0.9 - - 0.0 -
Weighted CombANZ - - - 1.0 - - 0.1 -

Fusion H
Weighted CombSUM 0.2 0.3 0.1 0.6 - - - -
Weighted CombMNZ 0.0 0.3 0.0 0.9 - - - -
Weighted CombANZ 0.4 0.3 0.1 1.0 - - - -

Fusion I
Weighted CombSUM - - - - 0.0 0.6 0.4 0.9
Weighted CombMNZ - - - - 0.0 0.7 0.5 0.9
Weighted CombANZ - - - - 0.2 0.9 0.2 0.9

Fusion J
Weighted CombSUM 0.2 0.5 0.1 0.7 0.1 0.5 0.0 0.2
Weighted CombMNZ 0.7 0.9 0.2 1.0 0.2 0.9 0.1 0.9
Weighted CombANZ 0.8 0.8 0.2 0.5 0.0 1.0 0.4 0.9

Appendix C. Optimal Fusion Weights 200

Table C.4: Optimal fusion weights for the different fusion experiments on the Bibsonomy
articles data set.

Run ID Method R1 R2 R3 R4 R5 R6 R7 R8

Fusion A
Weighted CombSUM 0.9 0.2 - - - - - -
Weighted CombMNZ 0.9 0.2 - - - - - -
Weighted CombANZ 0.8 0.5 - - - - - -

Fusion B
Weighted CombSUM - - 0.1 0.7 - - - -
Weighted CombMNZ - - 0.0 1.0 - - - -
Weighted CombANZ - - 0.1 0.9 - - - -

Fusion C
Weighted CombSUM 1.0 - - 0.7 - - - -
Weighted CombMNZ 1.0 - - 0.4 - - - -
Weighted CombANZ 0.3 - - 0.8 - - - -

Fusion D
Weighted CombSUM - - - - 0.9 0.3 - -
Weighted CombMNZ - - - - 0.9 0.3 - -
Weighted CombANZ - - - - 0.1 1.0 - -

Fusion E
Weighted CombSUM - - - - - - 0.1 0.9
Weighted CombMNZ - - - - - - 0.0 0.9
Weighted CombANZ - - - - - - 0.1 0.7

Fusion F
Weighted CombSUM - - - - 0.8 - - 0.5
Weighted CombMNZ - - - - 0.8 - - 0.5
Weighted CombANZ - - - - 0.1 - - 1.0

Fusion G
Weighted CombSUM - - - 0.7 - - - 1.0
Weighted CombMNZ - - - 0.0 - - - 0.9
Weighted CombANZ - - - 1.0 - - - 0.7

Fusion H
Weighted CombSUM 1.0 0.2 0.1 0.7 - - - -
Weighted CombMNZ 0.8 0.6 0.0 0.2 - - - -
Weighted CombANZ 0.4 0.4 0.1 0.7 - - - -

Fusion I
Weighted CombSUM - - - - 0.8 0.2 0.1 0.3
Weighted CombMNZ - - - - 0.7 0.6 0.1 1.0
Weighted CombANZ - - - - 0.1 0.5 0.1 0.8

Fusion J
Weighted CombSUM 1.0 0.1 0.4 0.4 1.0 0.4 0.0 0.9
Weighted CombMNZ 0.9 0.3 1.0 0.9 0.5 0.0 0.2 1.0
Weighted CombANZ 0.6 0.4 0.6 0.8 0.1 0.9 0.2 1.0

Appendix C. Optimal Fusion Weights 201

Table C.5: Optimal fusion weights for the different fusion experiments on the CiteULike
bookmarks data set.

Run ID Method R1 R2 R3 R4 R5 R6 R7 R8

Fusion A
Weighted CombSUM 0.2 0.8 - - - - - -
Weighted CombMNZ 0.1 0.6 - - - - - -
Weighted CombANZ 0.1 1.0 - - - - - -

Fusion B
Weighted CombSUM - - 0.2 0.8 - - - -
Weighted CombMNZ - - 0.1 0.7 - - - -
Weighted CombANZ - - 0.1 0.6 - - - -

Fusion C
Weighted CombSUM - 0.7 - 0.4 - - - -
Weighted CombMNZ - 1.0 - 0.4 - - - -
Weighted CombANZ - 0.7 - 0.9 - - - -

Fusion D
Weighted CombSUM - - - - 1.0 0.2 - -
Weighted CombMNZ - - - - 1.0 0.2 - -
Weighted CombANZ - - - - 0.0 1.0 - -

Fusion E
Weighted CombSUM - - - - - - 0.1 0.9
Weighted CombMNZ - - - - - - 0.1 1.0
Weighted CombANZ - - - - - - 0.1 0.8

Fusion F
Weighted CombSUM - - - - 0.7 - - 0.5
Weighted CombMNZ - - - - 1.0 - - 0.4
Weighted CombANZ - - - - 0.1 - - 0.9

Fusion G
Weighted CombSUM - 1.0 - - 0.7 - - -
Weighted CombMNZ - 1.0 - - 0.7 - - -
Weighted CombANZ - 1.0 - - 0.1 - - -

Fusion H
Weighted CombSUM 0.3 0.8 0.0 1.0 - - - -
Weighted CombMNZ 0.1 0.8 0.0 0.5 - - - -
Weighted CombANZ 0.1 0.9 0.0 0.5 - - - -

Fusion I
Weighted CombSUM - - - - 1.0 0.1 0.1 0.3
Weighted CombMNZ - - - - 0.8 0.2 0.1 0.1
Weighted CombANZ - - - - 0.0 0.9 0.1 0.9

Fusion J
Weighted CombSUM 0.4 1.0 0.3 0.7 1.0 0.5 0.0 0.7
Weighted CombMNZ 0.4 1.0 0.1 0.2 0.2 0.8 0.0 0.1
Weighted CombANZ 0.3 1.0 0.6 1.0 0.1 1.0 0.4 1.0

A
P

P
E

N
D

IX D
DUPLICATE ANNOTATION IN CITEULIKE

Figure D.1: Screenshot of the interface for judging duplicate CiteULike pairs. The example
pair in the screenshot is a typical example of a duplicate pair. For each article in the pair,
we display the hyperlinked article ID pointing to the CiteULike article page, the article title,
the publication year, and the author(s).

After obtaining a training set of 2,777 pairs as described in Subsection 8.3.1, we needed to
determine which of these pairs were duplicates and which were different items. Figure D.1
shows the simple interface we created for duplicate annotation. The seed item is shown at
the top with its item ID, title, year, and author metadata and the same metadata fields are
shown at the bottom of the screen for the matched item. The annotator can then judge the

203

Appendix D. Duplicate Annotation in CiteULike 204

articles to be ‘the same’ or ‘different’. The article IDs are linked to their CiteULike article
pages for easy reference.

LIST OF FIGURES

2.1 Two examples of user-item matrices . 11
2.2 Ingwersen’s nested context model for information seeking 18
2.3 Aspects of Human-Recommender Interaction . 20
2.4 Broad vs narrow folksonomy . 25
2.5 Visualization of the social graph . 26
2.6 Navigation on a social bookmarking website . 29

3.1 Screenshot of a user’s profile page in CiteULike 41
3.2 Screenshot of a user’s profile page in BibSonomy 43
3.3 Screenshot of a user’s profile page in Delicious 45
3.4 Example of the usage representation format . 46
3.5 Example of the metadata representation format 47
3.6 Visualization of our 10-fold cross-validation setup 51

4.1 Representing the folksonomy graph as a 3D matrix 56
4.2 Deriving tagging information at the user level and the item level 57
4.3 Fusing the usage-based and tag-based similarity matrices 69
4.4 Extending the user-item matrix for tag-aware fusion 77
4.5 Construction of the random walk transition matrix 79

5.1 Visualization of our profile-centric matching algorithm 89
5.2 Visualization of our post-centric matching algorithm 91
5.3 Visualization of our user-based hybrid filtering algorithm 92
5.4 Visualization of our item-based hybrid filtering algorithm 93

7.1 Examples of clean and spam posts in our SGML representation 131
7.2 Two variants of our spam detection approach . 134
7.3 ROC curves of best-performing spam detection approaches 137
7.4 User level differences in AP scores with regard to spam 143

8.1 Distribution of the duplicates over the different seed items. 153
8.2 Example instances from our duplicate detection training set 154
8.3 Visualization of our popularity blocking scheme for duplicate identification . 157
8.4 Example duplicate graph patterns . 158
8.5 Visualizing the identified duplicates . 159
8.6 Popularity of the CiteULike items before and after deduplication 160

205

List of Figures 206

8.7 User level differences in AP scores with regard to deduplication 163

9.1 An overview of possible research tasks on social bookmarking websites 175

A.1 A small subset of a CiteULike data dump . 191
A.2 A small subset of a CiteULike data dump with the proper user names 193
A.3 Screenshot of the spam annotation interface for CiteULike 194

D.1 Screenshot of the interface for judging duplicate CiteULike pairs 203

LIST OF TABLES

2.1 Tag categorization scheme according tag function 22

3.1 Statistics of the four data sets used in our experiments 40
3.2 Statistics of the filtered versions of our data sets 49

4.1 Results of the popularity-based baseline . 59
4.2 Results of the k-Nearest Neighbor algorithm . 64
4.3 Results of the k-NN algorithm with tag overlap similarities 71
4.4 Results of the k-NN algorithm with tagging intensity similarities 71
4.5 Results of the k-NN algorithm with similarity fusion 72
4.6 Results of the tag-aware and random walk approaches 81

5.1 Metadata categorization and distribution over the four data sets. 87
5.2 Results of the two content-based filtering approaches 96
5.3 Results of the two hybrid filtering approaches . 97
5.4 Results comparison with folksonomic recommendation 99

6.1 A taxonomy of recommender system combination methods 108
6.2 An overview of our fusion experiments . 115
6.3 Results of our fusion experiments . 116
6.4 Fusion analysis results . 118
6.5 Comparison of different fusion approaches . 119

7.1 Spam statistics of the BibSonomy and CiteULike data sets 129
7.2 Results of spam detection on BibSonomy and CiteULike 137
7.3 Basic statistics of our spam-extended BibSonomy bookmarks data set 141
7.4 The influence of spam on recommendation performance 142

8.1 Similarity features used in duplicate detection 154
8.2 List of parameters optimized for the SVM classifier 155
8.3 Results of duplicate classification on the training set 158
8.4 Results of deduplicating the entire CiteULike data set 158
8.5 Basic statistics of our deduplicated CiteULike data set 161
8.6 The influence of duplicate items on recommendation performance 162

A.1 Statistics of the user alignment process . 192

207

List of Tables 208

B.1 Run names used in Chapter 4 . 195
B.2 Run names used in Chapter 4 (continued) . 196

C.1 Run IDs used in Tables C.2–C.5 . 197
C.2 Optimal fusion weights for Bibsonomy bookmarks data set 198
C.3 Optimal fusion weights for Delicious bookmarks data set 199
C.4 Optimal fusion weights for Bibsonomy articles data set 200
C.5 Optimal fusion weights for CiteULike bookmarks data set 201

LIST OF ABBREVIATIONS

AUC Area Under the Curve
CAPTCHA Completely Automated Public Turing test to tell Computers and

Humans Apart
CBR Case-Based Reasoning
CF Collaborative Filtering
DOI Digital Object Identifier
GBCF Graph-Based Collaborative Filtering
HRI Human-Recommender Interaction
HTML Hyper-Text Markup Language
IB Item-Based filtering
IF Information Filtering
IMA Information Management Assistant
IR Information Retrieval
ISBN International Standard Book Number
ISSN International Standard Serial Number
IT Information Technology
KL Kullback-Leibler divergence
MAP Mean Average Precision
MRR Mean Reciprocal Rank
PDF Portable Document Format
PLSA Probabilistic Latent Semantic Analysis
ROC Receiver-Operator Characteristic
SGML Standard Generalized Markup Language
SSI Set of Similar Items
SSU Set of Similar Users
SVM Support Vector Machine
TBCF Tag-Based Collaborative Filtering
TIBCF Tagging Intensity-Based Collaborative Filtering
TOBCF Tag Overlap-Based Collaborative Filtering
TREC Text REtrieval Conference
UB User-Based filtering
UCOV User COVerage
URL Uniform Resource Locator

209

SUMMARY

Under the label of Web 2.0, the past decade has seen a genuine and fundamental change
in the way people interact with and through the World Wide Web. One of its prominent
features is a shift in information access and creation from local and solitary, to global and
collaborative. Social bookmarking websites such as Delicious and CiteULike are a clear case
in point of this shift: instead of keeping a local copy of pointers to favorite URLs or sci-
entific articles, users can instead store and access their bookmarks online through a Web
interface. The underlying system then makes all stored information shareable among users.
In addition to this functionality, most social bookmarking services also offer the user the op-
portunity to describe the content they added to their personal profile with keywords. These
keywords, commonly referred to as tags, are an addition to e.g. the title and summary
metadata commonly used to annotate content, and improve the access and retrievability of
a user’s own bookmarked Web pages. These tags are then made available to all users, many
of whom have annotated many of the same Web pages with possibly overlapping tags. This
social tagging results in a rich network of users, bookmarks, and tags, commonly referred to
as a folksonomy.

As social bookmarking systems become more popular, they need effective access methods
to help users locate all the interesting content present in those systems. One such type of
technology are recommender systems, which are a form of personalized information filtering
technology used to identify sets of items that are likely to be of interest to a certain user,
using a variety of information sources. In this thesis, we investigate how recommender
systems can be applied to the domain of social bookmarking to recommend interesting
and relevant Web pages and scientific articles to the user, based on two main information
sources about the user and the items: usage data and metadata. The former represent the
past selections and transactions of all users, while the latter describe the resources on a
social bookmarking website with e.g. titles, descriptions, authorship, tags, and temporal
and publication-related metadata. These two characteristic information sources of social
bookmarking lead us to formulate the following problem statement for this thesis:

How can we utilize the characteristics of social bookmarking websites to produce
the best possible item recommendations for users?

211

Summary 212

We start in Chapter 2 by providing the reader with an overview of the general related
work on recommender systems. We give a historical overview, describe the most important
approaches and specific discuss related approaches to recommending Web pages and scien-
tific articles. We discuss the history of social tagging and its applications, and we give an
overview of the history and structure of social bookmarking websites.

Chapter 3 describes our research methodology. We define the recommendation task we are
trying to solve, and introduce our four data sets and their collection process. We also discuss
our experimental setup, from data pre-processing and filtering to our choice of evaluation
metrics.

In Chapter 4 we investigate the first of two important characteristics of social bookmarking
systems: the presence of the folksonomy. We focus on using the tags present in the folkson-
omy of social bookmarking systems, which describe the content of an item and can therefore
be used in determining the similarity between two objects. We extend a standard nearest-
neighbor collaborative filtering algorithm with different tag similarity metrics. We find that,
because of reduced sparsity, the performance of item-based filtering can be improved by
using the item similarities based on the overlap in the tags assigned to those items. User-
based filtering is not helped by using tag overlap similarities. We find that it is easier to
recommend scientific articles than bookmarks. We also examine merging different types of
similarity with inconclusive results, and compared our algorithms with two state-of-the-art
approaches. We conclude that tags can be used successfully to improve performance.

In Chapter 5, we investigate the usefulness of item metadata in recommendation process,
the other characteristic of social bookmarking websites, and examine how we can use
this metadata to improve recommendation performance. We propose four different algo-
rithms, divided into two classes: two content-based filtering approaches and two hybrid
approaches. In content-based filtering, a profile-centric approach, where all of the meta-
data assigned by a user is matched against metadata representations of the items, works
better than matching posts with each other because of sparseness issues. We also compare
two hybrid CF approaches that use the metadata representations to calculate the user and
item similarities. Here, we find that item-based filtering with the metadata-derived similar-
ities works best. What the best overall metadata-based algorithm is, is dependent on the
data set. We also find that the quality of the metadata is as important to performance as the
sparsity of the metadata field. Depending on the data set, metadata-based recommendation
works as well as folksonomic recommendation or better.

Chapter 6 describes our experiments with combining the different recommendation algo-
rithms from the previous chapters. We compared weighted and unweighted methods of
combining the predictions of different algorithms and find that weighted fusion is superior
to unweighted fusion. The best results are achieved by fusing the results of recommendation
algorithms and representations that touch upon different aspects of the item recommenda-
tion process.

In addition to the recommendation experiments described in Chapters 4 through 6, we
also examine two specific growing pains that accompany the increasing popularity of social
bookmarking websites. Chapter 7 examines the problem of spam for two of our collections,
and find they contain large amounts of spam, ranging from 30% to 93% of all users marked

Summary 213

as spammers. We show that it is possible to train a classifier to automatically detect spam
users in a social bookmarking system, by comparing all of the metadata they have added
together to the metadata added by genuine users and by other spammers. We also examine
the influence of spam on recommendation performance and find that spam has a negative
effect on recommendation. The influence of spam depends on the recommendation algo-
rithm, but all result lists are unacceptably polluted with spam items, proving the necessity
of adequate spam detection techniques.

Chapter 8 examines the problem of duplicate content, i.e. when users accidentally and care-
lessly add Web pages or scientific articles that are already present in the system. We examine
one of our data sets to quantify the problem of duplicate content. We construct a training
set and train a duplicate identification classifier which found a small percentage of dupli-
cates. We find that these duplicate items follow a Zipfian distribution with a long tail, just as
regular items do, which means that certain duplicates can be quite widespread. Finally, we
examine the influence of duplicates on recommendation performance by creating a dedu-
plicated version of our data set. We two different recommendation algorithms, but do not
find any clear effect of deduplication on recommendation.

SAMENVATTING

Onder de noemer Web 2.0 is er in de afgelopen jaren een fundamentele verandering op-
getreden in de manier waarop mensen met elkaar communiceren en interageren op en via
het World Wide Web. Een van de meest prominente eigenschappen hiervan is een verschui-
ving in de toegang tot informatie van lokaal en individueel tot globaal en collaboratief.
Zogenaamde social bookmarking diensten als Delicious en CiteULikezijn hier een duidelijk
voorbeeld van. Social bookmarking websites staan hun gebruikers toe om hun favoriete
webpagina’s or wetenschappelijke artikelen online op te slaan en te beheren middels een
web-interface, in plaats van deze ‘bookmarks’ lokaal in een browser op te slaan. Het onder-
liggende systeem maakt dan alle opgeslagen informatie toegankelijk voor alle gebruikers.
Naast deze functionaliteit bieden de meeste social bookmarking diensten de gebruiker ook
de mogelijk om de objecten te beschrijven die ze aan hun profiel hebben toegevoegd te be-
schrijven met steekwoorden. Deze steekwoorden worden ook wel tags genoemd en vormen
een aanvulling bovenop de gebruikelijke metadata zoals titel en samenvatting. Tags kun-
nen gebruikt worden om de bookmarks van een gebruiker te categoriseren en verhogen de
toegang tot en de hervindbaarheid van de bookmarks. De tags die een gebruiker toekent,
worden beschikbaar gemaakt voor alle gebruikers, waarvan velen dezelfde webpagina’s toe
hebben gevoegd met mogelijkerwijs overlappende tags. Dit zogenaamde social tagging fe-
nomeen leidt tot het onstaan van een rijk netwerk van gebruikers, bookmarks en tags, ook
wel een folksonomie genoemd.

De groei in populariteit van social bookmarking systemen brengt een behoefte met zich
mee aan effectieve methoden en technieken waarmee gebruikers nieuwe en interessante
inhoud kunnen vinden in dit soort systemen. Een voorbeeld van dit soort technologie wordt
gevormd door recommendersystemen, die het filteren van informatie personaliseren voor
de gebruiker en op die manier die objecten kunnen identificeren die voor de gebruiker
interessant zouden kunnen zijn. Dit soort suggesties kunnen gebaseerd worden op een
verscheidenheid aan informatiebronnen. In dit proefschrift wordt onderzocht hoe recom-
mendersystemen toegepast kunnen worden op het domein van social bookmarking om in-
teressante webpagina’s en wetenschappelijke artikelen aan te raden aan gebruikers. Deze
suggesties worden gegenereerd op basis van twee informatiebronnen over de gebruikers en
de objecten: gebruiksinformatie en metadata. Gebruiksinformatie biedt een overzicht van
de transacties en selecties die gebruikers in het verleden hebben uitgevoerd, d.w.z. welke
objecten hebben ze toegevoegd aan hun profiel en met welke tags? Metadata beschrijft

215

Samenvatting 216

de objecten op een social bookmarking website met bijvoorbeeld informatie over titels, sa-
menvattingen of auteursschap en met tags en tijds- en publicatiegerelateerde informatie.
Deze twee voor social bookmarking karakteristieke informatiebronnen brengen ons ertoe
de volgende probleemstelling te formuleren:

Hoe kunnen we het beste de karakteristieken van social bookmarking websites be-
nutten om de beste mogelijke suggesties te genereren voor gebruikers van dit soort
systemen?

We beginnen ons onderzoek in Hoofdstuk 2, waar we de lezer een historisch overzicht bie-
den van recommendersystemen. We beschrijven de belangrijkste aanpakken en gaan dieper
in op gerelateerde werk aan systemen die webpagina’s of artikelen kunnen voorstellen aan
gebruikers. We beschrijven ook de geschiedenis van social tagging en haar toepassingen en
we geven een overzicht van de historie en de structuur van social bookmarking websites.

In Hoofdstuk 3 wordt de methodologie beschreven die in onze experimenten gevolgd wordt.
We preciseren de taak die we willen vervullen en introduceren de vier datasets waarop onze
experimenten zijn gebaseerd. We bespreken tevens onze experimentele opzet, van het voor-
bewerken van onze data en het filteren ervan, tot onze keuze voor de juiste evaluatieme-
trieken.

Hoofdstuk 4 onderzoekt de eerste van de twee eerdergenoemde belangrijke karakteristie-
ken van social bookmarking systemen: de aanwezigheid van een folksonomie. Voor het
bepalen van de overeenkomst tussen objecten of gebruikers richten we ons op de tags waar-
mee gebruikers de inhoud van objecten beschrijven. We breiden met succes een standaard
geheugengebaseerd recommendation algoritme uit met verschillende ‘similarity’ metrieken
gebaseerd op tag-overlap. Een vergelijking met bestaande algoritmes toont aan dat onze
aanpak competitief is hiermee.

In Hoofstuk 5 onderzoeken we het nut van het gebruiken van object metadata in het aan-
raden van webpagina’s en wetenschappelijke artikelen. We presenteren vier verschillende
algoritmes die deze informatiebron gebruiken om suggesties te genereren. Welk algoritme
het beste werkt is afhankelijk van de data set en domein, maar uit onze experimenten blijkt
dat de kwaliteit van de toegewezen metadata net zo belangrijk is voor de prestaties van de
algoritmes als de schaarste van de beschikbare metadatavelden. Vergeleken met recommen-
dation op basis van de folksonomie werken bepaalde algoritmes gebaseerd op metadata net
zo goed of beter.

In Hoofdstuk 6 beschrijven we experimenten waarin we de verschillende algoritmes uit de
voorgaande hoofdstukken combineren. We vergelijken gewogen en ongewogen methoden
om de voorspellingen van de verschillende algoritmes te combineren; gewogen combinatie
blijkt de meest veelbelovende fusiemethode te zijn. De beste resultaten worden behaald
door het fuseren van verschillende algoritmes en objectrepresentaties die zoveel mogelijk
verschillende aspecten van het recommendation-proces benadrukkken.

Naast de experimenten in Hoofdstuk 4 tot en met 6 onderzoeken we tevens twee specifieke
problemen waar snelgroeiende social bookmarking websites mee te maken kunnen krijgen.

Samenvatting 217

In hoofdstuk 7 onderzoeken we of spam een groot probleem is voor twee van onze datasets.
Met een percentage tussen de 30% en 93% aan spammers blijkt dit een veelvoorkomend
probleem te zijn. We tonen aan dat het mogelijk is om een classificatiealgoritme te trainen
dat automatisch spammers kan detecteren door de door hen toegewezen metadata te verge-
lijken met die van echte gebruikers en andere spammers. We constateren verder dat spam
een negatieve invloed heeft op het aanraden van interessante webpagina’s voor gebruikers,
Alhoewel de invloed afhankelijk is van het gekozen recommendation-algoritme, worden
de lijsten met gesuggereerde webpagina’s onacceptabel vervuild met spam. Dit toont de
noodzaak aan van effective technieken voor het detecteren van spam.

Hoofdstuk 8 onderzoekt tenslotte het probleem van duplicate content, d.w.z. objecten die per
ongeluk dubbel toegevoegd worden aan een social bookmarking systeem door gebruikers.
We onderzoeken een van onze datasets om een beeld van dit probleem te krijgen en merken
dat, alhoewel de meeste duplicaten slechts enkele keren voorkomen, bepaalde duplicaten
tamelijk populair kunnen worden. Daarnaast creëren we een trainingsset om een automa-
tisch classificatiealgoritme te trainen dat dubbele objecten kan leren herkennen. Tenslotte
onderzoeken we de invloed van duplicate content op de recommendation-algoritmes, maar
vinden hier geen sterk effect op de uiteindelijke prestaties.

CURRICULUM VITAE

Toine Bogers was born in Roosendaal, the Netherlands, on the 21st of September, 1979.
After graduating high school at Gertrudiscollege in Roosendaal in 1997, he started studying
Information Management at Tilburg University and obtained his M.A. degree in 2001. His
M.A. thesis was about a comparison of major Web service frameworks. In 2002, he started
his studies in Computational Linguistics & AI at Tilburg University; two years later, he ob-
tained a second M.A. degree. His second M.A. thesis was about the optimization of a named
entity recognizer for Dutch.

In December 2004, he joined the Induction of Linguistic Knowledge group at Tilburg Uni-
versity as a Ph.D. student under the supervision of Antal van den Bosch. Funded by Senter-
Novem and the Dutch Ministry of Economic Affairs as part of the IOP-MMI À Propos project,
the goal of this project was to develop an adaptive, personalized, just-in-time knowledge
management environment for members of professional workgroups, which supports them
in writing documents and test its usability in actual offices. The project was carried out in
collaboration with the University of Nijmegen and Intelli-Gent. The focus of Toine’s work
was on the personalization and recommendation of relevant document by the information
agent.

In addition, Toine worked on expert search with researchers of the ILPS group at the Univer-
sity of Amsterdam, which culminated in the development and adoption of a university-wide
expert search engine for Tilburg University. Another project was developing a system for
recommendation related news articles for the website of the Dutch newspaper Trouw. In
2008, Toine spent two and a half months working as a guest researcher at the Royal School
of Library and Information Science in Copenhagen, Denmark.

As of October 2009, Toine has been working at the Royal School of Library and Information
Science in Copenhagen, Denmark. His research interests include recommender systems, en-
terprise search, information retrieval, intelligent multimedia information systems (content
analysis, retrieval, and personalization).

219

PUBLICATIONS

The investigations performed during my Ph.D. research resulted in the following publica-
tions.

• K. Hofmann, K. Balog, T. Bogers, and M. de Rijke. Contextual Factors for Similar Expert
Finding. To appear in Journal of the American Society for Information Science, 2010.

• T. Bogers and A. van den Bosch. Collaborative and Content-based Filtering for Item Recom-
mendation on Social Bookmarking Websites. To appear in Proceedings of the ACM RecSys ’09
workshop on Recommender Systems and the Social Web, 2009.

• R. Liebregts and T. Bogers. Design and Implementation of a University-wide Expert Search
Engine. In M. Boughanem et al., editors, Proceedings of the 31st European Conference on
Information Retrieval (ECIR 2009), volume 5478 of Lecture Notes in Computer Science, pages
587–594, 2009.

• T. Bogers and A. van den Bosch. Using Language Modeling for Spam Detection in Social
Reference Manager Websites. In R. Aly et al., editors, Proceedings of the 9th Belgian-Dutch
Information Retrieval Workshop (DIR 2009), pages 87–94, 2009.

• T. Bogers and A. van den Bosch. Recommending Scientific Articles using CiteULike. In RecSys
’08: Proceedings of the 2008 ACM Conference on Recommender Systems, pages 287–290. 2008.

• T. Bogers and A. van den Bosch. Using Language Models for Spam Detection in Social Book-
marking. In Proceedings of 2008 ECML/ PKDD Discovery Challenge Workshop, pages 1–12,
2008.

• A. van den Bosch and T. Bogers. Efficient Context-Sensitive Word Completion for Mobile
Devices. In MobileHCI 2008: Proceedings of the 10th International Conference on Human-
Computer Interaction with Mobile Devices and Services, IOP-MMI special track, pages 465–470,
2008.

• K. Hofmann, K. Balog, T. Bogers, and M. de Rijke. Integrating Contextual Factors into Topic-
centric Retrieval Models for Finding Similar Experts. In Proceedings of ACM SIGIR 2008 Work-
shop on Future Challenges in Expert Retrieval, pages 29–36, 2008.

• M.C. Puerta Melguizo, O. Muñoz Ramos, L. Boves, T. Bogers, and A. van den Bosch. A Person-
alized Recommender System for Writing in the Internet Age. In Proceedings of the LREC 2008
workshop on Natural Language Processing Resources, Algorithms, and Tools for Authoring Aids,
2008.

221

Publications 222

• T. Bogers, K. Kox, and A. van den Bosch. Using Citation Analysis for Finding Experts in
Workgroups. In E. Hoenkamp et al., editors, Proceedings of the 8th Belgian-Dutch Information
Retrieval Workshop (DIR 2008), pages 21–28, 2008.

• T. Bogers and A. van den Bosch. Comparing and Evaluating Information Retrieval Algorithms
for News Recommendation. In RecSys ’07: Proceedings of the 2007 ACM Conference on Recom-
mender Systems, pages 141–144, 2007.

• K. Balog, T. Bogers, L. Azzopardi, M. de Rijke, and A. van den Bosch. Broad Expertise Re-
trieval in Sparse Data Environments. In C. Clarke et al., editors, SIGIR ’07: Proceedings of the
30th Annual International ACM SIGIR Conference on Research and Development in Information
Retrieval, pages 551–558, 2007.

• T. Bogers, W. Thoonen and A. van den Bosch. Expertise Classification: Collaborative Classifi-
cation vs. Automatic Extraction. In J.T. Tennis et al., editors, Proceedings of the 17th ASIS&T
SIG/CR workshop on Social Classification, 2006.

• T. Bogers. À Propos: Pro-Active Personalization for Professional Document Writing (long
abstract). In I. Ruthven et al., editors, Proceedings of the First IIiX Symposium on Information
Interaction in Context (IIiX 2006), page 303, 2006.

• S. Canisius, T. Bogers, A. van den Bosch, J. Geertzen, and E. Tjong Kim Sang. Dependency
Parsing by Inference over High-recall Dependency Predictions. In Proceedings of the Tenth
Conference on Computational Natural Language Learning (CoNLL-X), 2006.

• T. Bogers and A. van den Bosch. Authoritative Re-ranking of Search Results. In M. Lalmas et
al., editors, Proceedings of the 28th European Conference on Information Retrieval (ECIR 2006),
volume 3936 of Lecture Notes in Computer Science, pages 519–522, 2006.

• T. Bogers and A. van den Bosch. Authoritative Re-ranking in Fusing Authorship-based Sub-
collection Search Results. In Franciska de Jong and Wessel Kraaij, editors, Proceedings of the
Sixth Belgian- Dutch Information Retrieval Workshop (DIR 2006), pages 49–55, 2006.

• E. Tjong Kim Sang, S. Canisius, A. van den Bosch, and T. Bogers. Applying Spelling Error
Correction Techniques for Improving Semantic Role Labelling. In Proceedings of the Ninth
Conference on Natural Language Learning (CoNLL-2005), 2005.

SIKS DISSERTATION SERIES

1998

1 Johan van den Akker (CWI1) DEGAS - An Active,
Temporal Database of Autonomous Objects

2 Floris Wiesman (UM) Information Retrieval by
Graphically Browsing Meta-Information

3 Ans Steuten (TUD) A Contribution to the Linguistic
Analysis of Business Conversations within the Lan-
guage/Action Perspective

4 Dennis Breuker (UM) Memory versus Search in
Games

5 Eduard W. Oskamp (RUL) Computerondersteuning
bij Straftoemeting

1999

1 Mark Sloof (VU) Physiology of Quality Change
Modelling; Automated Modelling of Quality Change
of Agricultural Products

2 Rob Potharst (EUR) Classification using Decision
Trees and Neural Nets

3 Don Beal (UM) The Nature of Minimax Search
4 Jacques Penders (UM) The Practical Art of Moving

Physical Objects
5 Aldo de Moor (KUB) Empowering Communities: A

Method for the Legitimate User-Driven Specification
of Network Information Systems

6 Niek J.E. Wijngaards (VU) Re-Design of Composi-
tional Systems

7 David Spelt (UT) Verification Support for Object
Database Design

8 Jacques H.J. Lenting (UM) Informed Gambling:
Conception and Analysis of a Multi-Agent Mecha-
nism for Discrete Reallocation

2000

1 Frank Niessink (VU) Perspectives on Improving
Software Maintenance

2 Koen Holtman (TU/e) Prototyping of CMS Storage
Management

3 Carolien M.T. Metselaar (UvA) Sociaal-
organisatorische Gevolgen van Kennistechnologie;
een Procesbenadering en Actorperspectief

4 Geert de Haan (VU) ETAG, A Formal Model of Com-
petence Knowledge for User Interface Design

5 Ruud van der Pol (UM) Knowledge-Based Query
Formulation in Information Retrieval

6 Rogier van Eijk (UU) Programming Languages for
Agent Communication

7 Niels Peek (UU) Decision-Theoretic Planning of
Clinical Patient Management

8 Veerle Coupé (EUR) Sensitivity Analyis of Decision-
Theoretic Networks

9 Florian Waas (CWI) Principles of Probabilistic
Query Optimization

10 Niels Nes (CWI) Image Database Management Sys-
tem Design Considerations, Algorithms and Archi-
tecture

11 Jonas Karlsson (CWI) Scalable Distributed Data
Structures for Database Management

2001

1 Silja Renooij (UU) Qualitative Approaches to Quan-
tifying Probabilistic Networks

2 Koen Hindriks (UU) Agent Programming Lan-
guages: Programming with Mental Models

1Abbreviations: SIKS - Dutch Research School for Information and Knowledge Systems; CWI - Centrum voor
Wiskunde en Informatica, Amsterdam; EUR - Erasmus Universiteit, Rotterdam; KUB - Katholieke Universiteit
Brabant, Tilburg; KUN - Katholieke Universiteit Nijmegen; OU - Open Universiteit; RUL - Rijksuniversiteit Lei-
den; RUN - Radboud Universiteit Nijmegen; TUD - Technische Universiteit Delft; TU/e - Technische Universiteit
Eindhoven; UL - Universiteit Leiden; UM - Universiteit Maastricht; UT - Universiteit Twente, Enschede; UU -
Universiteit Utrecht; UvA - Universiteit van Amsterdam; UvT - Universiteit van Tilburg; VU - Vrije Universiteit,
Amsterdam.

223

SIKS Dissertation Series 224

3 Maarten van Someren (UvA) Learning as Problem
Solving

4 Evgueni Smirnov (UM) Conjunctive and Disjunctive
Version Spaces with Instance-Based Boundary Sets

5 Jacco van Ossenbruggen (VU) Processing Struc-
tured Hypermedia: A Matter of Style

6 Martijn van Welie (VU) Task-Based User Interface
Design

7 Bastiaan Schonhage (VU) Diva: Architectural Per-
spectives on Information Visualization

8 Pascal van Eck (VU) A Compositional Semantic
Structure for Multi-Agent Systems Dynamics

9 Pieter Jan ’t Hoen (RUL) Towards Distributed De-
velopment of Large Object-Oriented Models, Views
of Packages as Classes

10 Maarten Sierhuis (UvA) Modeling and Simulat-
ing Work Practice BRAHMS: a Multiagent Modeling
and Simulation Language for Work Practice Analy-
sis and Design

11 Tom M. van Engers (VU) Knowledge Management:
The Role of Mental Models in Business Systems De-
sign

2002

1 Nico Lassing (VU) Architecture-Level Modifiability
Analysis

2 Roelof van Zwol (UT) Modelling and Searching
Web-based Document Collections

3 Henk Ernst Blok (UT) Database Optimization As-
pects for Information Retrieval

4 Juan Roberto Castelo Valdueza (UU) The Discrete
Acyclic Digraph Markov Model in Data Mining

5 Radu Serban (VU) The Private Cyberspace Model-
ing Electronic Environments Inhabited by Privacy-
Concerned Agents

6 Laurens Mommers (UL) Applied Legal Epistemol-
ogy; Building a Knowledge-based Ontology of the
Legal Domain

7 Peter Boncz (CWI) Monet: A Next-Generation
DBMS Kernel For Query-Intensive Applications

8 Jaap Gordijn (VU) Value Based Requirements Engi-
neering: Exploring Innovative E-Commerce Ideas

9 Willem-Jan van den Heuvel (KUB) Integrat-
ing Modern Business Applications with Objectified
Legacy Systems

10 Brian Sheppard (UM) Towards Perfect Play of
Scrabble

11 Wouter C.A. Wijngaards (VU) Agent Based Mod-
elling of Dynamics: Biological and Organisational
Applications

12 Albrecht Schmidt (UvA) Processing XML in
Database Systems

13 Hongjing Wu (TU/e) A Reference Architecture for
Adaptive Hypermedia Applications

14 Wieke de Vries (UU) Agent Interaction: Abstract
Approaches to Modelling, Programming and Verify-
ing Multi-Agent Systems

15 Rik Eshuis (UT) Semantics and Verification of UML
Activity Diagrams for Workflow Modelling

16 Pieter van Langen (VU) The Anatomy of Design:
Foundations, Models and Applications

17 Stefan Manegold (UvA) Understanding, Model-
ing, and Improving Main-Memory Database Perfor-
mance

2003

1 Heiner Stuckenschmidt (VU) Ontology-Based In-
formation Sharing in Weakly Structured Environ-
ments

2 Jan Broersen (VU) Modal Action Logics for Reason-
ing About Reactive Systems

3 Martijn Schuemie (TUD) Human-Computer Inter-
action and Presence in Virtual Reality Exposure
Therapy

4 Milan Petkovic (UT) Content-Based Video Retrieval
Supported by Database Technology

5 Jos Lehmann (UvA) Causation in Artificial Intelli-
gence and Law – A Modelling Approach

6 Boris van Schooten (UT) Development and Specifi-
cation of Virtual Environments

7 Machiel Jansen (UvA) Formal Explorations of
Knowledge Intensive Tasks

8 Yong-Ping Ran (UM) Repair-Based Scheduling
9 Rens Kortmann (UM) The Resolution of Visually

Guided Behaviour
10 Andreas Lincke (UT) Electronic Business Negotia-

tion: Some Experimental Studies on the Interaction
between Medium, Innovation Context and Cult

11 Simon Keizer (UT) Reasoning under Uncertainty
in Natural Language Dialogue using Bayesian Net-
works

12 Roeland Ordelman (UT) Dutch Speech Recognition
in Multimedia Information Retrieval

13 Jeroen Donkers (UM) Nosce Hostem – Searching
with Opponent Models

14 Stijn Hoppenbrouwers (KUN) Freezing Language:
Conceptualisation Processes across ICT-Supported
Organisations

15 Mathijs de Weerdt (TUD) Plan Merging in Multi-
Agent Systems

16 Menzo Windhouwer (CWI) Feature Grammar Sys-
tems - Incremental Maintenance of Indexes to Digital
Media Warehouse

17 David Jansen (UT) Extensions of Statecharts with
Probability, Time, and Stochastic Timing

18 Levente Kocsis (UM) Learning Search Decisions

2004

1 Virginia Dignum (UU) A Model for Organizational
Interaction: Based on Agents, Founded in Logic

2 Lai Xu (UvT) Monitoring Multi-party Contracts for
E-business

SIKS Dissertation Series 225

3 Perry Groot (VU) A Theoretical and Empirical Anal-
ysis of Approximation in Symbolic Problem Solving

4 Chris van Aart (UvA) Organizational Principles for
Multi-Agent Architectures

5 Viara Popova (EUR) Knowledge Discovery and
Monotonicity

6 Bart-Jan Hommes (TUD) The Evaluation of Busi-
ness Process Modeling Techniques

7 Elise Boltjes (UM) VoorbeeldIG Onderwijs; Voor-
beeldgestuurd Onderwijs, een Opstap naar Abstract
Denken, vooral voor Meisjes

8 Joop Verbeek (UM) Politie en de Nieuwe Inter-
nationale Informatiemarkt, Grensregionale Politiële
Gegevensuitwisseling en Digitale Expertise

9 Martin Caminada (VU) For the Sake of the Argu-
ment; Explorations into Argument-based Reasoning

10 Suzanne Kabel (UvA) Knowledge-rich Indexing of
Learning-objects

11 Michel Klein (VU) Change Management for Dis-
tributed Ontologies

12 The Duy Bui (UT) Creating Emotions and Facial Ex-
pressions for Embodied Agents

13 Wojciech Jamroga (UT) Using Multiple Models of
Reality: On Agents who Know how to Play

14 Paul Harrenstein (UU) Logic in Conflict. Logical Ex-
plorations in Strategic Equilibrium

15 Arno Knobbe (UU) Multi-Relational Data Mining
16 Federico Divina (VU) Hybrid Genetic Relational

Search for Inductive Learning
17 Mark Winands (UM) Informed Search in Complex

Games
18 Vania Bessa Machado (UvA) Supporting the Con-

struction of Qualitative Knowledge Models
19 Thijs Westerveld (UT) Using generative probabilis-

tic models for multimedia retrieval
20 Madelon Evers (Nyenrode) Learning from Design:

facilitating multidisciplinary design teams

2005

1 Floor Verdenius (UvA) Methodological Aspects of
Designing Induction-Based Applications

2 Erik van der Werf (UM) AI techniques for the game
of Go

3 Franc Grootjen (RUN) A Pragmatic Approach to the
Conceptualisation of Language

4 Nirvana Meratnia (UT) Towards Database Support
for Moving Object data

5 Gabriel Infante-Lopez (UvA) Two-Level Probabilis-
tic Grammars for Natural Language Parsing

6 Pieter Spronck (UM) Adaptive Game AI
7 Flavius Frasincar (TU/e) Hypermedia Presentation

Generation for Semantic Web Information Systems
8 Richard Vdovjak (TU/e) A Model-driven Approach

for Building Distributed Ontology-based Web Appli-
cations

9 Jeen Broekstra (VU) Storage, Querying and Infer-
encing for Semantic Web Languages

10 Anders Bouwer (UvA) Explaining Behaviour: Using
Qualitative Simulation in Interactive Learning Envi-
ronments

11 Elth Ogston (VU) Agent Based Matchmaking and
Clustering - A Decentralized Approach to Search

12 Csaba Boer (EUR) Distributed Simulation in Indus-
try

13 Fred Hamburg (UL) Een Computermodel voor het
Ondersteunen van Euthanasiebeslissingen

14 Borys Omelayenko (VU) Web-Service configuration
on the Semantic Web; Exploring how semantics
meets pragmatics

15 Tibor Bosse (VU) Analysis of the Dynamics of Cog-
nitive Processes

16 Joris Graaumans (UU) Usability of XML Query Lan-
guages

17 Boris Shishkov (TUD) Software Specification Based
on Re-usable Business Components

18 Danielle Sent (UU) Test-selection strategies for
probabilistic networks

19 Michel van Dartel (UM) Situated Representation
20 Cristina Coteanu (UL) Cyber Consumer Law, State

of the Art and Perspectives
21 Wijnand Derks (UT) Improving Concurrency and

Recovery in Database Systems by Exploiting Appli-
cation Semantics

2006

1 Samuil Angelov (TU/e) Foundations of B2B Elec-
tronic Contracting

2 Cristina Chisalita (VU) Contextual issues in the de-
sign and use of information technology in organiza-
tions

3 Noor Christoph (UvA) The role of metacognitive
skills in learning to solve problems

4 Marta Sabou (VU) Building Web Service Ontologies
5 Cees Pierik (UU) Validation Techniques for Object-

Oriented Proof Outlines
6 Ziv Baida (VU) Software-aided Service Bundling -

Intelligent Methods & Tools for Graphical Service
Modeling

7 Marko Smiljanic (UT) XML schema matching – bal-
ancing efficiency and effectiveness by means of clus-
tering

8 Eelco Herder (UT) Forward, Back and Home Again
- Analyzing User Behavior on the Web

9 Mohamed Wahdan (UM) Automatic Formulation of
the Auditor’s Opinion

10 Ronny Siebes (VU) Semantic Routing in Peer-to-
Peer Systems

11 Joeri van Ruth (UT) Flattening Queries over Nested
Data Types

12 Bert Bongers (VU) Interactivation - Towards an
e-cology of people, our technological environment,
and the arts

SIKS Dissertation Series 226

13 Henk-Jan Lebbink (UU) Dialogue and Decision
Games for Information Exchanging Agents

14 Johan Hoorn (VU) Software Requirements: Update,
Upgrade, Redesign - towards a Theory of Require-
ments Change

15 Rainer Malik (UU) CONAN: Text Mining in the
Biomedical Domain

16 Carsten Riggelsen (UU) Approximation Methods
for Efficient Learning of Bayesian Networks

17 Stacey Nagata (UU) User Assistance for Multitask-
ing with Interruptions on a Mobile Device

18 Valentin Zhizhkun (UvA) Graph transformation for
Natural Language Processing

19 Birna van Riemsdijk (UU) Cognitive Agent Pro-
gramming: A Semantic Approach

20 Marina Velikova (UvT) Monotone models for pre-
diction in data mining

21 Bas van Gils (RUN) Aptness on the Web
22 Paul de Vrieze (RUN) Fundaments of Adaptive Per-

sonalisation
23 Ion Juvina (UU) Development of Cognitive Model

for Navigating on the Web
24 Laura Hollink (VU) Semantic Annotation for Re-

trieval of Visual Resources
25 Madalina Drugan (UU) Conditional log-likelihood

MDL and Evolutionary MCMC
26 Vojkan Mihajlovic (UT) Score Region Algebra: A

Flexible Framework for Structured Information Re-
trieval

27 Stefano Bocconi (CWI) Vox Populi: generating
video documentaries from semantically annotated
media repositories

28 Borkur Sigurbjornsson (UvA) Focused Information
Access using XML Element Retrieval

2007

1 Kees Leune (UvT) Access Control and Service-
Oriented Architectures

2 Wouter Teepe (RUG) Reconciling Information Ex-
change and Confidentiality: A Formal Approach

3 Peter Mika (VU) Social Networks and the Semantic
Web

4 Jurriaan van Diggelen (UU) Achieving Semantic In-
teroperability in Multi-agent Systems: a dialogue-
based approach

5 Bart Schermer (UL) Software Agents, Surveillance,
and the Right to Privacy: a Legislative Framework
for Agent-enabled Surveillance

6 Gilad Mishne (UvA) Applied Text Analytics for Blogs
7 Natasa Jovanovic’ (UT) To Whom It May Concern -

Addressee Identification in Face-to-Face Meetings
8 Mark Hoogendoorn (VU) Modeling of Change in

Multi-Agent Organizations
9 David Mobach (VU) Agent-Based Mediated Service

Negotiation

10 Huib Aldewereld (UU) Autonomy vs. Conformity:
an Institutional Perspective on Norms and Protocols

11 Natalia Stash (TU/e) Incorporating Cogni-
tive/Learning Styles in a General-Purpose Adaptive
Hypermedia System

12 Marcel van Gerven (RUN) Bayesian Networks for
Clinical Decision Support: A Rational Approach to
Dynamic Decision-Making under Uncertainty

13 Rutger Rienks (UT) Meetings in Smart Environ-
ments; Implications of Progressing Technology

14 Niek Bergboer (UM) Context-Based Image Analysis
15 Joyca Lacroix (UM) NIM: a Situated Computa-

tional Memory Model
16 Davide Grossi (UU) Designing Invisible Handcuffs.

Formal investigations in Institutions and Organiza-
tions for Multi-agent Systems

17 Theodore Charitos (UU) Reasoning with Dynamic
Networks in Practice

18 Bart Orriens (UvT) On the development and man-
agement of adaptive business collaborations

19 David Levy (UM) Intimate relationships with artifi-
cial partners

20 Slinger Jansen (UU) Customer Configuration Up-
dating in a Software Supply Network

21 Karianne Vermaas (UU) Fast diffusion and broad-
ening use: A research on residential adoption and
usage of broadband internet in the Netherlands be-
tween 2001 and 2005

22 Zlatko Zlatev (UT) Goal-oriented design of value
and process models from patterns

23 Peter Barna (TU/e) Specification of Application
Logic in Web Information Systems

24 Georgina Ramírez Camps (CWI) Structural Fea-
tures in XML Retrieval

25 Joost Schalken (VU) Empirical Investigations in
Software Process Improvement

2008

1 Katalin Boer-Sorbán (EUR) Agent-Based Simula-
tion of Financial Markets: A modular, continuous-
time approach

2 Alexei Sharpanskykh (VU) On Computer-Aided
Methods for Modeling and Analysis of Organizations

3 Vera Hollink (UvA) Optimizing hierarchical menus:
a usage-based approach

4 Ander de Keijzer (UT) Management of Uncertain
Data - towards unattended integration

5 Bela Mutschler (UT) Modeling and simulating
causal dependencies on process-aware information
systems from a cost perspective

6 Arjen Hommersom (RUN) On the Application of
Formal Methods to Clinical Guidelines, an Artificial
Intelligence Perspective

7 Peter van Rosmalen (OU) Supporting the tutor in
the design and support of adaptive e-learning

8 Janneke Bolt (UU) Bayesian Networks: Aspects of
Approximate Inference

SIKS Dissertation Series 227

9 Christof van Nimwegen (UU) The paradox of the
guided user: assistance can be counter-effective

10 Wauter Bosma (UT) Discourse oriented Summa-
rization

11 Vera Kartseva (VU) Designing Controls for Network
Organizations: a Value-Based Approach

12 Jozsef Farkas (RUN) A Semiotically oriented Cogni-
tive Model of Knowledge Representation

13 Caterina Carraciolo (UvA) Topic Driven Access to
Scientific Handbooks

14 Arthur van Bunningen (UT) Context-Aware Query-
ing; Better Answers with Less Effort

15 Martijn van Otterlo (UT) The Logic of Adaptive Be-
havior: Knowledge Representation and Algorithms
for the Markov Decision Process Framework in First-
Order Domains

16 Henriette van Vugt (VU) Embodied Agents from a
User’s Perspective

17 Martin Op’t Land (TUD) Applying Architecture and
Ontology to the Splitting and Allying of Enterprises

18 Guido de Croon (UM) Adaptive Active Vision
19 Henning Rode (UT) From document to entity re-

trieval: improving precision and performance of fo-
cused text search

20 Rex Arendsen (UvA) Geen bericht, goed bericht.
Een onderzoek naar de effecten van de introductie
van elektronisch berichtenverkeer met een overheid
op de administratieve lasten van bedrijven

21 Krisztian Balog (UvA) People search in the enter-
prise

22 Henk Koning (UU) Communication of IT-
architecture

23 Stefan Visscher (UU) Bayesian network models for
the management of ventilator-associated pneumonia

24 Zharko Aleksovski (VU) Using background knowl-
edge in ontology matching

25 Geert Jonker (UU) Efficient and Equitable exchange
in air traffic management plan repair using spender-
signed currency

26 Marijn Huijbregts (UT) Segmentation, diarization
and speech transcription: surprise data unraveled

27 Hubert Vogten (OU) Design and implementation
strategies for IMS learning design

28 Ildiko Flesh (RUN) On the use of independence re-
lations in Bayesian networks

29 Dennis Reidsma (UT) Annotations and subjective
machines- Of annotators, embodied agents, users,
and other humans

30 Wouter van Atteveldt (VU) Semantic network anal-
ysis: techniques for extracting, representing and
querying media content

31 Loes Braun (UM) Pro-active medical information
retrieval

32 Trung B. Hui (UT) Toward affective dialogue man-
agement using partially observable markov decision
processes

33 Frank Terpstra (UvA) Scientific workflow design;
theoretical and practical issues

34 Jeroen de Knijf (UU) Studies in Frequent Tree Min-
ing

35 Benjamin Torben-Nielsen (UvT) Dendritic mor-
phology: function shapes structure

2009

1 Rasa Jurgelenaite (RUN) Symmetric Causal Inde-
pendence Models

2 Willem Robert van Hage (VU) Evaluating
Ontology-Alignment Techniques

3 Hans Stol (UvT) A Framework for Evidence-based
Policy Making Using IT

4 Josephine Nabukenya (RUN) Improving the Qual-
ity of Organisational Policy Making using Collabo-
ration Engineering

5 Sietse Overbeek (RUN) Bridging Supply and De-
mand for Knowledge Intensive Tasks - Based on
Knowledge, Cognition, and Quality

6 Muhammad Subianto (UU) Understanding Classi-
fication

7 Ronald Poppe (UT) Discriminative Vision-Based Re-
covery and Recognition of Human Motion

8 Volker Nannen (VU) Evolutionary Agent-Based Pol-
icy Analysis in Dynamic Environments

9 Benjamin Kanagwa (RUN) Design, Discovery and
Construction of Service-oriented Systems

10 Jan Wielemaker (UvA) Logic programming for
knowledge-intensive interactive applications

11 Alexander Boer (UvA) Legal Theory, Sources of Law
& the Semantic Web

12 Peter Massuthe (TU/e, Humboldt-Universtät zu
Berlin) Operating Guidelines for Services

13 Steven de Jong (UM) Fairness in Multi-Agent Sys-
tems

14 Maksym Korotkiy (VU) From ontology-enabled ser-
vices to service-enabled ontologies (making ontolo-
gies work in e-science with ONTO-SOA)

15 Rinke Hoekstra (UvA) Ontology Representation -
Design Patterns and Ontologies that Make Sense

16 Fritz Reul (UvT) New Architectures in Computer
Chess

17 Laurens van der Maaten (UvT) Feature Extraction
from Visual Data

18 Fabian Groffen (CWI) Armada, An Evolving
Database System

19 Valentin Robu (CWI) Modeling Preferences, Strate-
gic Reasoning and Collaboration in Agent-Mediated
Electronic Markets

20 Bob van der Vecht (UU) Adjustable Autonomy:
Controling Influences on Decision Making

21 Stijn Vanderlooy (UM) Ranking and Reliable Clas-
sification

22 Pavel Serdyukov (UT) Search For Expertise: Going
beyond direct evidence

23 Peter Hofgesang (VU) Modelling Web Usage in a
Changing Environment

24 Annerieke Heuvelink (VU) Cognitive Models for
Training Simulations

SIKS Dissertation Series 228

25 Alex van Ballegooij (CWI) “RAM: Array Database
Management through Relational Mapping"

26 Fernando Koch (UU) An Agent-Based Model for the
Development of Intelligent Mobile Services

27 Christian Glahn (OU) Contextual Support of social
Engagement and Reflection on the Web

28 Sander Evers (UT) Sensor Data Management with
Probabilistic Models

29 Stanislav Pokraev (UT) Model-Driven Semantic In-
tegration of Service-Oriented Applications

30 Marcin Zukowski (CWI) Balancing vectorized query
execution with bandwidth-optimized storage

31 Sofiya Katrenko (UvA) A Closer Look at Learning
Relations from Text

32 Rik Farenhorst and Remco de Boer (VU) Architec-
tural Knowledge Management: Supporting Archi-
tects and Auditors

33 Khiet Truong (UT) How Does Real Affect Affect Af-
fect Recognition In Speech?

34 Inge van de Weerd (UU) Advancing in Software
Product Management: An Incremental Method En-
gineering Approach

35 Wouter Koelewijn (UL) Privacy en Politiegegevens;
Over geautomatiseerde normatieve informatie-
uitwisseling

36 Marco Kalz (OUN) Placement Support for Learners
in Learning Networks

37 Hendrik Drachsler (OUN) Navigation Support for
Learners in Informal Learning Networks

38 Riina Vuorikari (OU) Tags and self-organisation: a
metadata ecology for learning resources in a multi-
lingual context

39 Christian Stahl (TUE, Humboldt-Universität zu
Berlin) Service Substitution – A Behavioral Ap-
proach Based on Petri Nets

40 Stephan Raaijmakers (UvT) Multinomial Language
Learning: Investigations into the Geometry of Lan-
guage

41 Igor Berezhnyy (UvT) Digital Analysis of Paintings
42 Toine Bogers (UvT) Recommender Systems for So-

cial Bookmarking

TICC DISSERTATION SERIES

1. Pashiera Barkhuysen
Audiovisual Prosody in Interaction
Promotores: M.G.J. Swerts, E.J. Krahmer
Tilburg, 3 October 2008

2. Ben Torben-Nielsen
Dendritic Morphology: Function Shapes Structure
Promotores: H.J. van den Herik, E.O. Postma
Co-promotor: K.P. Tuyls
Tilburg, 3 December 2008

3. Hans Stol
A Framework for Evidence-based Policy Making using IT
Promotor: H.J. van den Herik
Tilburg, 21 January 2009

4. Jeroen Geertzen
Act Recognition and Prediction. Explorations in Computational Dialogue Modelling
Promotor: H.C. Bunt
Co-promotor: J.M.B. Terken
Tilburg, 11 February 2009

5. Sander Canisius
Structural Prediction for Natural Language Processing: A Constraint Satisfaction
Approach
Promotores: A.P.J. van den Bosch, W.M.P. Daelemans
Tilburg, 13 February 2009

6. Fritz Reul
New Architectures in Computer Chess
Promotor: H.J. van den Herik
Co-promotor: J.H.W.M. Uiterwijk
Tilburg, 17 June 2009

229

TiCC Dissertation Series 230

7. Laurens van der Maaten
Feature Extraction from Visual Data
Promotores: E.O. Postma, H.J. van den Herik
Co-promotor: A.G. Lange
Tilburg, 23 June 2009

8. Stephan Raaijmakers
Multinomial Language Learning: Investigations into the Geometry of Language
Promotor: A.P.J. van den Bosch
Tilburg, 1 December 2009

9. Igor Berezhnyy
Digital Analysis of Paintings
Promotores: E.O. Postma, H.J. van den Herik
Tilburg, 7 December 2009

10. Toine Bogers
Recommender Systems for Social Bookmarking
Promotor: A.P.J. van den Bosch
Tilburg, 8 December 2009

	Preface
	1 Introduction
	1.1 Social Bookmarking
	1.2 Scope of the Thesis
	1.3 Problem Statement and Research Questions
	1.4 Research Methodology
	1.5 Organization of the Thesis
	1.6 Origins of the Material

	2 Related Work
	2.1 Recommender Systems
	2.1.1 Collaborative Filtering
	2.1.2 Content-based Filtering
	2.1.3 Knowledge-based Recommendation
	2.1.4 Recommending Bookmarks & References
	2.1.5 Recommendation in Context

	2.2 Social Tagging
	2.2.1 Indexing vs. Tagging
	2.2.2 Broad vs. Narrow Folksonomies
	2.2.3 The Social Graph

	2.3 Social Bookmarking
	2.3.1 Domains
	2.3.2 Interacting with Social Bookmarking Websites
	2.3.3 Research tasks

	I Recommending Bookmarks
	3 Building Blocks for the Experiments
	3.1 Recommender Tasks
	3.2 Data Sets
	3.2.1 CiteULike
	3.2.2 BibSonomy
	3.2.3 Delicious

	3.3 Data Representation
	3.4 Experimental Setup
	3.4.1 Filtering
	3.4.2 Evaluation
	3.4.3 Discussion

	4 Folksonomic Recommendation
	4.1 Preliminaries
	4.2 Popularity-based Recommendation
	4.3 Collaborative Filtering
	4.3.1 Algorithm
	4.3.2 Results
	4.3.3 Discussion

	4.4 Tag-based Collaborative Filtering
	4.4.1 Tag Overlap Similarity
	4.4.2 Tagging Intensity Similarity
	4.4.3 Similarity Fusion
	4.4.4 Results
	4.4.5 Discussion

	4.5 Related work
	4.6 Comparison to Related Work
	4.6.1 Tag-aware Fusion of Collaborative Filtering Algorithms
	4.6.2 A Random Walk on the Social Graph
	4.6.3 Results
	4.6.4 Discussion

	4.7 Chapter Conclusions and Answer to RQ 1

	5 Exploiting Metadata for Recommendation
	5.1 Contextual Metadata in Social Bookmarking
	5.2 Exploiting Metadata for Item Recommendation
	5.2.1 Content-based Filtering
	5.2.2 Hybrid Filtering
	5.2.3 Similarity Matching
	5.2.4 Selecting Metadata Fields for Recommendation Runs

	5.3 Results
	5.3.1 Content-based Filtering
	5.3.2 Hybrid Filtering
	5.3.3 Comparison to Folksonomic Recommendation

	5.4 Related Work
	5.4.1 Content-based Filtering
	5.4.2 Hybrid Filtering

	5.5 Discussion
	5.6 Chapter Conclusions and Answer to RQ 2

	6 Combining Recommendations
	6.1 Related Work
	6.1.1 Fusing Recommendations
	6.1.2 Data Fusion in Machine Learning and IR
	6.1.3 Why Does Fusion Work?

	6.2 Fusing Recommendations
	6.3 Selecting Runs for Fusion
	6.4 Results
	6.4.1 Fusion Analysis
	6.4.2 Comparing All Fusion Methods

	6.5 Discussion & Conclusions
	6.6 Chapter Conclusions and Answer to RQ 3

	II Growing Pains: Real-world Issues in Social Bookmarking
	7 Spam
	7.1 Related Work
	7.2 Methodology
	7.2.1 Data Collection
	7.2.2 Data Representation
	7.2.3 Evaluation

	7.3 Spam Detection for Social Bookmarking
	7.3.1 Language Models for Spam Detection
	7.3.2 Spam Classification
	7.3.3 Results
	7.3.4 Discussion and Conclusions

	7.4 The Influence of Spam on Recommendation
	7.4.1 Related Work
	7.4.2 Experimental Setup
	7.4.3 Results and Analysis

	7.5 Chapter Conclusions and Answer to RQ 4

	8 Duplicates
	8.1 Duplicates in CiteULike
	8.2 Related Work
	8.3 Duplicate Detection
	8.3.1 Creating a Training Set
	8.3.2 Constructing a Duplicate Item Classifier
	8.3.3 Results and Analysis

	8.4 The Influence of Duplicates on Recommendation
	8.4.1 Experimental Setup
	8.4.2 Results and Analysis

	8.5 Chapter Conclusions and Answer to RQ 5

	III Conclusion
	9 Discussion and Conclusions
	9.1 Answers to Research Questions
	9.2 Recommendations for Recommendation
	9.3 Summary of Contributions
	9.4 Future Directions

	References

	Appendices
	A Collecting the CiteULike Data Set
	A.1 Extending the Public Data Dump
	A.2 Spam Annotation

	B Glossary of Recommendation Runs
	C Optimal Fusion Weights
	D Duplicate Annotation in CiteULike
	List of Figures
	List of Tables
	List of Abbreviations
	Summary
	Samenvatting
	Curriculum Vitae
	Publications
	SIKS Dissertation Series
	TiCC Dissertation Series

